Solutions for Mathematical Reflections 5(2006)

Juniors

J25. Let k be a real number different from 1 . Solve the system of equations

$$
\left\{\begin{array}{c}
(x+y+z)(k x+y+z)=k^{3}+2 k^{2} \\
(x+y+z)(x+k y+z)=4 k^{2}+8 k \\
(x+y+z)(x+y+k z)=4 k+8
\end{array}\right.
$$

Proposed by Dr. Titu Andreescu, University of Texas at Dallas
First solution by José Luis Díaz-Barrero and José Gibergans-Báguena, Universitat Politècnica de Catalunya, Barcelona, Spain.

Solution. Setting $s=x+y+z$ and adding up the three equations given, we obtain

$$
\begin{aligned}
s(k x+2 x+k y+2 y+k z+2 z) & =k^{3}+6 k^{2}+12 k+8 \\
(x+y+z)(k+2) & =(k+2)^{3}
\end{aligned}
$$

and

$$
s= \pm(k+2)
$$

If $x+y+z=0$, then $k=-2$, also if $k=-2$ we get $x=y=z=0$.
Otherwise we distinguish the cases (i) when $s=k+2$ and (ii) when $s=-(k+2)$.
(i) If $s=(k+2)$, then

$$
\left\{\begin{aligned}
(k+2)(k x+y+z) & =k^{2}(k+2) \\
(k+2)(x+k y+z) & =4 k(k+2) \\
(k+2)(x+y+k z) & =4(k+2)
\end{aligned}\right.
$$

or equivalently

$$
\left\{\begin{array}{l}
k x+y+z=k^{2} \\
x+k y+z=4 k \\
x+y+k z=4
\end{array}\right.
$$

and using $x+y+z=k+2$ we get

$$
x=\frac{(k-2)(k+1)}{k-1}, y=\frac{3 k-2}{k-1}, z=\frac{-(k-2)}{k-1} .
$$

(ii) If $s=-(k+2)$, then

$$
x=-\frac{(k-2)(k+1)}{k-1}, y=-\frac{3 k-2}{k-1}, z=\frac{k-2}{k-1}
$$

is the solution obtained. Notice that in both cases we have $k \neq 1$, as stated, and we are done.

Second solution by Ashay Burungale, India.

Solution. We observe that $x+y+z=0$ forces $k=-2$.
The case $k=-2$ forces $k x+y+z=x+k y+z=x+y+k z=0$, which gives us $x=y=z=0$. Assume that $x+y+z$ to be nonzero and k different from -2 .

Dividing the third equation by the second, we get

$$
\begin{equation*}
\frac{x+k y+z}{x+y+k z}=k, \text { and thus } x(k-1)=z\left(1-k^{2}\right) . \tag{1}
\end{equation*}
$$

As $k \neq 1$, it follows that $x=-(k+1) \cdot z$.
Dividing the first equation by the second, we get

$$
\frac{k x+y+z}{x+k y+z}=\frac{k}{4}, \text { and thus } z(k-4)+y\left(k^{2}-4\right)=3 k x .
$$

Using first relation (1) we have

$$
\begin{gather*}
z(k-4)+y\left(k^{2}-4\right)=-3 k(k+1) z, \\
y\left(k^{2}-4\right)=z\left(-3 k^{2}-4 k+4\right), \\
y(k-2)(k+2)=-z(3 k-2)(k+2) . \tag{2}
\end{gather*}
$$

Thus we have $y=-\frac{3 k-2}{k-2} \cdot z$.
Plugging results (1) and (2) in the third equation, we get

$$
\begin{gathered}
z^{2}\left(-(k+1)-\frac{3 k-2}{k-2}+1\right)\left(-(k+1)-\frac{3 k-2}{k-2}+k\right)=4(k+2) \\
z^{2}\left(k^{2}+k-2\right)(4(k-1))=4(k+2)(k-2)^{2}
\end{gathered}
$$

Therefore $z=\mp \frac{k-2}{k-1}$ and $x= \pm \frac{(k-2)(k+1)}{k-1}, y= \pm \frac{3 k-2}{k-1}$.

J26. A line divides an equilateral triangle into two parts with the same perimeter and having areas S_{1} and S_{2}, respectively. Prove that

$$
\frac{7}{9} \leq \frac{S_{1}}{S_{2}} \leq \frac{9}{7}
$$

Proposed by Bogdan Enescu, "B.P. Hasdeu" National College, Romania

First solution by Vishal Lama, Southern Utah University.

Solution. Without loss of generality, we may assume that the given equilateral triangle $A B C$ has sides of unit length, $A B=B C=C A=1$. If the line cuts the triangle in two triangles them clearly $\frac{S_{1}}{S_{2}}=1$.

We may assume that the line cuts side $A B$ at D and $A C$ at E. Let the area of triangle $A D E=S_{1}$ and the area of quadrilateral $B D E C=S_{2}$.

Then, $S_{1}+S_{2}=$ area of equilateral triangle $A B C=\frac{\sqrt{3}}{4}$.
Let $B D=x$ and $C E=y$. Then, $A D=1-x$ and $A E=1-y$. Since the regions with areas S_{1} and S_{2} have equal perimeter, we must have $B D+B C+C E=A D+A E$.

$$
x+1+y=(1-x)+(1-y), \quad \Rightarrow x+y=\frac{1}{2} .
$$

Now, area of triangle $A D E=S_{1}=\frac{1}{2} \cdot A D \cdot A E \cdot \sin (\angle D A E)$,

$$
S_{1}=\frac{1}{2}(1-x)(1-y) \sin 60^{\circ}, \Rightarrow S_{1}=\frac{\sqrt{3}}{4}(1-x)\left(\frac{1}{2}+x\right)
$$

Denote $a=\frac{S_{2}}{S_{1}}>0$, we get that

$$
\frac{S_{1}}{S_{1}+S_{2}}=\frac{1}{1+a}=(1-x)\left(\frac{1}{2}+x\right),
$$

which after some simplification yields

$$
2 x^{2}-x+\frac{1-a}{1+a}=0 .
$$

The above quadratic equation in x has real roots and the discriminant should be greater or equal to zero. Thus

$$
\Delta=1-4 \cdot 2 \cdot\left(\frac{1-a}{1+a}\right)=\frac{9 a-7}{a+1} \geq 0
$$

Therefore $a \geq \frac{7}{9}$ or $\frac{S_{2}}{S_{1}} \geq \frac{7}{9}$. Changing our the notations: area of triangle $A D E=S_{2}$ and area of quadrilateral $B D E C=S_{1}$ we get that $\frac{S_{1}}{S_{2}} \geq \frac{7}{9}$. Thus

$$
\frac{7}{9} \leq \frac{S_{1}}{S_{2}} \leq \frac{9}{7}
$$

Second solution by Daniel Campos Salas, Costa Rica.
Solution. Suppose without loss of generality, that the triangle has sidelength 1. Note that this implies $S_{1}+S_{2}=\frac{\sqrt{3}}{4}$. The line can divide the triangle into a triangle and a quadrilateral or two congruent triangles. The second case is obvious. Since the inequality is symmetric with respect to S_{1} and S_{2} we can assume that S_{2} is the area of the new triangle.

Let l be one of the sides of the new triangle which belongs to perimeter of the equilateral triangle. The other side of the new triangle in the perimeter equals $\left(\frac{3}{2}-l\right)$. Then, $S_{2}=l\left(\frac{3}{2}-l\right) \frac{\sqrt{3}}{4}$. Note that the inequality is equivalent to

$$
\begin{align*}
& \frac{16}{9} \leq \frac{S_{1}+S_{2}}{S_{2}} \leq \frac{16}{7}, \text { or } \\
& \frac{7}{16} \leq l\left(\frac{3}{2}-l\right) \leq \frac{9}{16} \tag{1}
\end{align*}
$$

From the inequality $\left(l-\frac{3}{4}\right)^{2} \geq 0$, it follows that $l\left(\frac{3}{2}-l\right) \leq \frac{9}{16}$, and this proves the RHS inequality of (1). Since l and $\left(\frac{3}{2}-l\right)$ are smaller than the equilateral triangle sides it follows that $l,\left(\frac{3}{2}-l\right) \leq 1$, that implies that $l \in\left[\frac{1}{2}, 1\right]$. Now, the LHS inequality of (1) is equivalent to

$$
0 \geq 16 l^{2}-24 l+7,
$$

which holds if and only if $l \in\left[\frac{3-\sqrt{2}}{4}, \frac{3+\sqrt{2}}{4}\right]$, which is true because $\frac{3-\sqrt{2}}{4}<\frac{1}{2}$ and $1<\frac{3+\sqrt{2}}{4}$, and we are done.

J27. Consider points M, N inside the triangle $A B C$ such that $\angle B A M=$ $\angle C A N, \angle M C A=\angle N C B, \angle M B C=\angle C B N . M$ and N are isogonal points. Suppose $B M N C$ is a cyclic quadrilateral. Denote T the circumcenter of $B M N C$, prove that $M N \perp A T$.

Proposed by Ivan Borsenco, University of Texas at Dallas
First solution by Aleksandar Ilic, Serbia.
Solution. As T is circumcenter of quadrilateral $B M N C$, we have $T M=T N$. We will prove that $A N=A M$, and thus get two isosceles triangles over base $M N$ meaning $A T \perp M N$. We have to prove that $\measuredangle A N M=\measuredangle A M N$. Because $B M N C$ is cyclic quadrilateral we have $\measuredangle M C N=\measuredangle N B M$. Let's calculate angles:

$$
\begin{aligned}
& \measuredangle A N M=360^{\circ}-(\measuredangle C N M+\measuredangle A N C)=\measuredangle C B M+\measuredangle A C N+\measuredangle C A N . \\
& \measuredangle A M N=360^{\circ}-(\measuredangle B M N+\measuredangle A M B)=\measuredangle B C N+\measuredangle A B M+\measuredangle B A M .
\end{aligned}
$$

We know that $\measuredangle C A N=\measuredangle B A M$.
From the equality $\measuredangle B C N+\measuredangle A B M=(\measuredangle B C M+\measuredangle M C N)+\measuredangle A B M=$ $\measuredangle A C N+(\measuredangle M B N+\measuredangle N B C)=\measuredangle A C N+\measuredangle C B M$ we conclude that $\measuredangle A N M=\measuredangle A M N$.

Second solution by Prachai K, Thailand.
Solution. Using Sine Theorem we get

$$
\frac{A M}{\sin \angle A B M}=\frac{B M}{\sin \angle B A M}, \frac{A N}{\sin \angle A C N}=\frac{C N}{\sin \angle C A N} .
$$

As $\angle B A M=\angle C A N$ we have

$$
\frac{A M}{A N}=\frac{B M \cdot \sin \angle A B M}{C N \cdot \sin \angle A C N}=\frac{2 R \cdot \sin \angle B C M \cdot \sin \angle A B M}{2 R \cdot \sin \angle C B N \cdot \sin \angle A C N} .
$$

Using the fact that $\angle B C M=\angle A C N$ and $\angle C B N=\angle A B M$ we get

$$
\frac{A M}{A N}=\frac{\sin \angle A C N \cdot \sin \angle A B M}{\sin \angle A B M \cdot \sin \angle A C N}=1 .
$$

Clearly the perpendiculars form A and T to $M N$ both bisect $M N$, it follows that $A T \perp M N$.

Also solved by Ashay Burungale, India.

J28. Let p be a prime such that $p \equiv 1(\bmod 3)$ and let $q=\left\lfloor\frac{2 p}{3}\right\rfloor$. If

$$
\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(q-1) q}=\frac{m}{n}
$$

for some integers m and n, prove that $p \mid m$.
Proposed by Dr. Titu Andreescu, University of Texas at Dallas First solution by Aleksandar Ilic, Serbia.

Solution. Let $p=3 k+1$ and $q=\left\lfloor\frac{2 p}{3}\right\rfloor=2 k$. When considering equation modulo p, we have to prove that it is congruent with zero mod p.
$S=\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{(q-1) \cdot q}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{q-1}-\frac{1}{q}$.
Now regroup fractions, and substitute $q=2 k$.

$$
S=\sum_{i=1}^{q} \frac{1}{i}-2 \sum_{i=1}^{q / 2} \frac{1}{2 i}=\sum_{i=1}^{2 k} \frac{1}{i}-\sum_{i=1}^{k} \frac{1}{i} .
$$

From Wolstenholme's theorem we get that:

$$
\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{p-1} \equiv 0\left(\bmod p^{2}\right)
$$

Because $-i \equiv_{p} p-i$, we have:
$S=\sum_{i=1}^{p-1} \frac{1}{i}-\sum_{i=2 k+1}^{p-1} \frac{1}{i}+\sum_{i=1}^{k} \frac{1}{p-i} \equiv_{p} 0-\sum_{i=2 k+1}^{3 k} \frac{1}{i}+\sum_{i=1}^{k} \frac{1}{3 k+1-i} \equiv 0(\bmod p)$.

Second solution by Ashay Burungale, India.

Solution. Note that $p=1(\bmod 6)$. Let $p=6 k+1$, thus $q=\left\lfloor\frac{2 p}{3}\right\rfloor=$ $4 k$. We have

$$
\begin{aligned}
& \frac{m}{n}=\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{(q-1) \cdot q}=\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(4 k-1) \cdot 4 k}= \\
& 1+\frac{1}{3}+\ldots+\frac{1}{4 k-1}-\left(\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{4 k}\right)=\frac{1}{2 k+1}+\frac{1}{2 k+2}+\ldots+\frac{1}{4 k} .
\end{aligned}
$$

Grouping $\left(\frac{1}{2 k+1}, \frac{1}{4 k}\right),\left(\frac{1}{2 k+2}, \frac{1}{4 k-1}\right), \ldots,\left(\frac{1}{3 k}, \frac{1}{3 k+1}\right)$ we get

$$
\begin{gathered}
\frac{m}{n}=\left(\frac{1}{2 k+1}+\frac{1}{4 k}\right)+\left(\frac{1}{2 k+2}+\frac{1}{4 k-1}\right)+\ldots+\left(\frac{1}{3 k}+\frac{1}{3 k+1}\right)= \\
=\frac{p}{(2 k+1)(4 k)}+\frac{p}{(2 k+2)(4 k-1)}+\ldots+\frac{p}{(3 k)(3 k+1)} .
\end{gathered}
$$

Because p is not divisible by any number from $\{2 k+1,2 k+2, \ldots, 4 k\}$ we get that $p \mid m$.

J29. Find all rational solutions of the equation

$$
\left\{x^{2}\right\}+\{x\}=0.99
$$

Proposed by Bogdan Enescu, "B.P. Hasdeu" National College, Romania

Solution by Daniel Campos, Costa Rica.
Solution. The equation is equivalent to

$$
x^{2}+x-0.99=\left\lfloor x^{2}\right\rfloor+\lfloor x\rfloor .
$$

Let $x=\frac{a}{b}$, with a, b coprime integers and b greater than 0 . Then, $\frac{100 a^{2}+100 a b-99 b^{2}}{100 b^{2}}$ is an integer. This implies that $100 \mid 99 b^{2}$ and $b^{2} \mid 100 a(a+b)$.

The first one implies that $100 \mid b^{2}$, while the second, since $(a, b)=1$, implies that $b^{2} \mid 100$. Then, $b=10$.

Then, $a^{2}+10 a-99 \equiv 0(\bmod 100)$. Note that

$$
a^{2}+10 a-99 \equiv a^{2}+10 a-299 \equiv(a-13)(a+23) \equiv 0(\bmod 100)
$$

This implies that a is odd, and that $(a-13)(a+23) \equiv 0(\bmod 25)$. Since $a-13 \not \equiv a+23(\bmod 5)$, it follows that $a=25 k+13$ or $a=25 k+2$.

Since a is odd, it follows that it is of the form $50 k+13$ or $50 k+27$. It is easy to verify that for any rational number of the form $5 k+\frac{13}{10}$ and $5 k+\frac{27}{10}$, with k integer, the equality holds.

J30. Let a, b, c be three nonnegative real numbers. Prove the inequality

$$
\frac{a^{3}+a b c}{b+c}+\frac{b^{3}+a b c}{a+c}+\frac{c^{3}+a b c}{a+b} \geq a^{2}+b^{2}+c^{2}
$$

Proposed by Cezar Lupu, University of Bucharest, Romania First solution by Zhao Bin, HUST, China.

Solution. Without loss of generality $a \geq b \geq c$, the inequality is equivalent to:

$$
\frac{a}{b+c}(a-b)(a-c)+\frac{b}{c+a}(b-a)(b-c)+\frac{c}{a+b}(c-a)(c-b) \geq 0 .
$$

But by $\frac{a}{b+c} \geq \frac{b}{c+a}$ and $(a-b)(a-c) \geq 0$, we have

$$
\begin{gathered}
\frac{a}{b+c}(a-b)(a-c)+\frac{b}{c+a}(b-a)(b-c) \geq \\
\geq \frac{b}{c+a}(a-b)(a-c)+\frac{b}{c+a}(b-a)(b-c) \geq \frac{b}{c+a}(a-b)^{2} \geq 0 .
\end{gathered}
$$

Also we have

$$
\frac{c}{a+b}(c-a)(c-b) \geq 0
$$

Thus we solve the problem.
Second solution by Aleksandar Ilic, Serbia.

Solution.

Rewrite the inequality in the following form:

$$
\left(\frac{a^{3}+a b c}{b+c}-a^{2}\right)+\left(\frac{b^{3}+a b c}{a+c}-b^{2}\right)+\left(\frac{c^{3}+a b c}{a+b}-c^{2}\right) \geq 0 .
$$

Now combine expressions in brackets to get:

$$
\frac{a(a-b)(a-c)}{b+c}+\frac{b(b-a)(b-c)}{a+c}+\frac{c(c-a)(c-b)}{a+b} \geq 0 .
$$

When multiply both sides of equation with $(a+b)(b+c)(c+a)$ we get Schur's inequality for numbers a^{2}, b^{2} and c^{2} and $r=\frac{1}{2}$.

$$
a\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)+b\left(b^{2}-a^{2}\right)\left(b^{2}-c^{2}\right)+c\left(c^{2}-a^{2}\right)\left(c^{2}-b^{2}\right) \geq 0 .
$$

Also solved by Daniel Campos, Costa Rica; Ashay Burungale, India; Prachai K, Thailand.

Seniors

S25. Prove that in any acute-angled triangle $A B C$,

$$
\cos ^{3} A+\cos ^{3} B+\cos ^{3} C+\cos A \cos B \cos C \geq \frac{1}{2}
$$

Proposed by Dr. Titu Andreescu, University of Texas at Dallas First solution by Prachai K, Thailand.

Solution. Let $x=\cos A, y=\cos B, z=\cos C$. It is well known fact that

$$
\cos ^{2} A+\cos ^{2} B+\cos ^{2} C+2 \cos A \cos B \cos C=1,
$$

and therefore $x^{2}+y^{2}+z^{2}+2 x y z=1$.
Also from Jensen Inequality it is not difficult to find that

$$
\cos A \cdot \cos B \cdot \cos C \leq \frac{1}{8}
$$

It follows that $x y z \leq \frac{1}{8}$ and $x^{2}+y^{2}+z^{2} \geq \frac{3}{4}$.
Using the Power-Mean inequality we have

$$
\left(x^{3}+y^{3}+z^{3}\right)^{2} \geq \frac{1}{3}\left(x^{2}+y^{2}+z^{2}\right)^{3} \geq \frac{1}{4}\left(x^{2}+y^{2}+z^{2}\right)^{2}
$$

or

$$
2\left(x^{3}+y^{3}+z^{3}\right) \geq x^{2}+y^{2}+z^{2} .
$$

Thus

$$
2\left(x^{3}+y^{3}+z^{3}\right)+2 x y z \geq x^{2}+y^{2}+z^{2}+2 x y z=1,
$$

and we are done.
Second solution by Hung Quang Tran, Hanoi National University, Vietnam.

Solution. Using the equality

$$
\cos ^{2} A+\cos ^{2} B+\cos ^{2} C+2 \cos A \cos B \cos C=1,
$$

the initial inequality becomes equivalent to

$$
2\left(\cos ^{3} A+\cos ^{3} B+\cos ^{3} C\right) \geq \cos ^{2} A+\cos ^{2} B+\cos ^{2} C .
$$

Using the fact that triangle $A B C$ is acute angled we get $\cos A, \cos B, \cos C \geq 0$, and therefore

$$
\begin{aligned}
& \quad(1-2 \cos A)^{2} \cos A+(1-2 \cos B)^{2} \cos B+(1-2 \cos C)^{2} \cos C \geq 0 \\
& 4\left(\cos ^{3} A+\cos ^{3} B+\cos ^{3} C\right)-4\left(\cos ^{2} A+\cos ^{2} B+\cos ^{2} C\right)+(\cos A+\cos B+\cos C) \geq 0 \\
& 2\left(\cos ^{3} A+\cos ^{3} B+\cos ^{3} C\right) \geq 2\left(\cos ^{2} A+\cos ^{2} B+\cos ^{2} C\right)-\frac{1}{2}(\cos A+\cos B+\cos C)
\end{aligned}
$$

Thus it is enough to prove
$2\left(\cos ^{2} A+\cos ^{2} B+\cos ^{2} C\right)-\frac{1}{2}(\cos A+\cos B+\cos C) \geq \cos ^{2} A+\cos ^{2} B+\cos ^{2} C$,
or

$$
2\left(\cos ^{2} A+\cos ^{2} B+\cos ^{2} C\right) \geq \cos A+\cos B+\cos C .
$$

Using well known inequalities

$$
\cos 2 A+\cos 2 B+\cos 2 C \geq-\frac{3}{2} \text { and } \cos A+\cos B+\cos C \leq \frac{3}{2}
$$

we have

$$
(1+\cos 2 A)+(1+\cos 2 B)+(1+\cos 2 C) \geq \frac{3}{2}
$$

or

$$
2\left(\cos ^{2} A+\cos ^{2} B+\cos ^{2} C\right) \geq \frac{3}{2} \geq \cos A+\cos B+\cos C
$$

and we are done.
Also solved by Daniel Campos, Costa Rica; Zhao Bin, HUST, China.

S26. Consider a triangle $A B C$ and let I_{a} be the center of the circle that touches the side $B C$ at A^{\prime} and the extensions of sides $A B$ and $A C$ at C^{\prime} and B^{\prime}, respectively. Denote by X the second intersections of the line $A^{\prime} B^{\prime}$ with the circle with center B and radius $B A^{\prime}$ and by K the midpoint of $C X$. Prove that K lies on the midline of the triangle $A B C$ corresponding to $A C$.

Proposed by Liubomir Chiriac, Princeton University
First solution by David E. Narvaez, Universidad Tecnologica de Panama, Panama.

Solution. Let M be the midpoint of $A C$ and let D be the second point of intersection of $B C$ with the circle with center B and radius $B A^{\prime}$. It follows, from the definition of K, that $K M$ is parallel to $X B$, so it will be sufficient to show that $X B$ is parallel to $A C$.

Since $\angle X B D$ is a central angle, we have that

$$
\angle X B D=2\left(\angle X A^{\prime} D\right)=2\left(\angle C A^{\prime} B^{\prime}\right)=2\left(\frac{C}{2}\right)=\angle A C B,
$$

which implies that $X B$ is parallel to $A C$.
Second solution by Zhao Bin, HUST, China.
Solution. Denote D the midpoint of $B C$. Then clearly $D K$ is the midline of the triangle $B X C$, corresponding to $B X$. Also we have

$$
\angle B X A^{\prime}=\angle B A^{\prime} X=\angle B^{\prime} A^{\prime} C=\angle C B^{\prime} A^{\prime} .
$$

Hence

$$
B X\left\|B^{\prime} C\right\| A C,
$$

and thus it is not difficult to see that the line $D K$ is the midline of the triangle $A B C$ corresponding to $A C$,so K lines on the midline of the triangle $A B C$ corresponding to $A C$. The problem is solved.

Also solved by Aleksandar Ilic, Serbia; Prachai K, Thailand.

S27. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$
\sqrt[3]{\frac{a^{2}+b c}{b^{2}+c^{2}}}+\sqrt[3]{\frac{b^{2}+c a}{c^{2}+a^{2}}}+\sqrt[3]{\frac{c^{2}+a b}{a^{2}+b^{2}}} \geq \frac{9 \sqrt[3]{a b c}}{a+b+c}
$$

Proposed by Pham Huu Duc, Australia
First solution by Ho Phu Thai, Da Nang, Vietnam.
Solution. By the AM-HM inequality:

$$
\sqrt[3]{\frac{a^{2}+b c}{b^{2}+c^{2}}}+\sqrt[3]{\frac{b^{2}+c a}{c^{2}+a^{2}}}+\sqrt[3]{\frac{c^{2}+a b}{a^{2}+b^{2}}} \geq \frac{9}{\sqrt[3]{\frac{b^{2}+c^{2}}{a^{2}+b c}}+\sqrt[3]{\frac{c^{2}+a^{2}}{b^{2}+c a}}+\sqrt[3]{\frac{a^{2}+b^{2}}{c^{2}+a b}}}
$$

It suffices to prove that:

$$
\frac{a+b+c}{\sqrt[3]{a b c}} \geq \sqrt[3]{\frac{b^{2}+c^{2}}{a^{2}+b c}}+\sqrt[3]{\frac{c^{2}+a^{2}}{b^{2}+c a}}+\sqrt[3]{\frac{a^{2}+b^{2}}{c^{2}+a b}}
$$

By Holder's inequality:

$$
\begin{gathered}
\left(\sqrt[3]{\frac{b^{2}+c^{2}}{a^{2}+b c}}+\sqrt[3]{\frac{c^{2}+a^{2}}{b^{2}+c a}}+\sqrt[3]{\frac{a^{2}+b^{2}}{c^{2}+a b}}\right)^{3} \leq \\
\leq 6\left(a^{2}+b^{2}+c^{2}\right)\left(\frac{1}{a^{2}+b c}+\frac{1}{b^{2}+c a}+\frac{1}{c^{2}+a b}\right)
\end{gathered}
$$

We are now to show that:

$$
\begin{gathered}
\frac{(a+b+c)^{3}}{a b c} \geq 6\left(a^{2}+b^{2}+c^{2}\right)\left(\frac{1}{a^{2}+b c}+\frac{1}{b^{2}+c a}+\frac{1}{c^{2}+a b}\right) \\
\Leftrightarrow \frac{(a+b+c)^{3}}{a b c}-27 \geq 3 \sum_{c y c}\left(\frac{2 a^{2}+2 b^{2}+2 c^{2}}{c^{2}+a b}-3\right) \\
\Leftrightarrow \frac{\frac{1}{2}(a+b+c) \sum_{c y c}(b-c)^{2}+3 \sum_{c y c} a(b-c)^{2}}{a b c} \geq \\
\geq 3 \sum_{c y c} \frac{3(b-c)^{2}}{2\left(a^{2}+b c\right)}+3 \sum_{c y c}(b-c)^{2} \frac{(b+c)(b+c-a)}{2\left(b^{2}+c a\right)\left(c^{2}+a b\right)} \\
\Leftrightarrow \sum_{c y c}(b-c)^{2}\left(\frac{7 a+b+c}{a b c}-\frac{9}{a^{2}+b c}-\frac{3(b+c)(b+c-a)}{\left(b^{2}+c a\right)\left(c^{2}+a b\right)}\right) \geq 0 .
\end{gathered}
$$

Consider the expressions S_{a}, S_{b}, S_{c} before $(b-c)^{2},(c-a)^{2},(a-b)^{2}$, respectively. We will point $S_{a}, S_{b}, S_{c} \geq 0$ out.

$$
\begin{gathered}
S_{a}=\frac{7 a+b+c}{a b c}-\frac{9}{a^{2}+b c}-\frac{3(b+c)(b+c-a)}{\left(b^{2}+c a\right)\left(c^{2}+a b\right)} \geq 0 \\
\Leftrightarrow 7 a^{4} b^{3}+7 a^{4} c^{3}+7 a^{5} b c+a b^{5} c+a b c^{5}+a^{3} b^{4}+a^{3} c^{4}+b^{4} c^{3}+b^{3} c^{4}+ \\
3 a^{3} b^{2} c^{2}+3 a^{2} b^{3} c^{2}+3 a^{2} b^{2} c^{3}+2 a^{4} b^{2} c+2 a^{4} b c^{2}-4 a b^{3} c^{3}-2 a^{2} b^{4} c-2 a^{2} b c^{4} \geq 0 .
\end{gathered}
$$

This is obviously true, by AM-GM:

$$
\begin{gathered}
b^{4} c^{3}+b^{3} c^{4}+a^{2} b^{3} c^{2}+a^{2} b^{2} c^{3} \geq 4 a b^{3} c^{3}, \\
a^{3} b^{4}+a b^{5} c+a^{2} b^{3} c^{2} \geq 3 a^{2} b^{4} c, \\
a^{3} c^{4}+a b c^{5}+a^{2} b^{2} c^{3} \geq 3 a^{2} b c^{4} .
\end{gathered}
$$

Similarly, $S_{b}, S_{c} \geq 0$ for any numbers $a, b, c>0$.
Our proof is complete. Equality occurs if and only if $a=b=c$.
Second solution by Zhao Bin, HUST, China.
Solution. If one of a, b, c is zero, then clearly the inequality is true. We may assume $a, b, c>0$.

By AM-GM inequality we have:

$$
\begin{gathered}
\sqrt[3]{a b c} \sqrt[3]{a^{2}+b c} \sqrt[3]{a^{2}+b c} \sqrt[3]{b^{2}+c^{2}}=\sqrt[3]{b\left(a^{2}+b c\right)} \sqrt[3]{c\left(a^{2}+b c\right)} \sqrt[3]{a\left(b^{2}+c^{2}\right)} \\
\leq \frac{a^{2} b+b^{2} a+b^{2} c+c^{2} b+a^{2} c+c^{2} a}{3}
\end{gathered}
$$

Thus:

$$
\begin{gathered}
\sqrt[3]{\frac{a^{2}+b c}{a b c\left(b^{2}+c^{2}\right)}}=\frac{a^{2}+b c}{\sqrt[3]{a b c} \sqrt[3]{a^{2}+b c} \sqrt[3]{a^{2}+b c} \sqrt[3]{b^{2}+c^{2}}} \geq \\
\frac{3\left(a^{2}+b c\right)}{a^{2} b+b^{2} a+b^{2} c+c^{2} b+a^{2} c+c^{2} a}
\end{gathered}
$$

Analogously,

$$
\sqrt[3]{\frac{b^{2}+c a}{a b c\left(c^{2}+a^{2}\right)}} \geq \frac{3\left(b^{2}+c a\right)}{a^{2} b+b^{2} a+b^{2} c+c^{2} b+a^{2} c+c^{2} a}
$$

and

$$
\sqrt[3]{\frac{c^{2}+a b}{a b c\left(a^{2}+b^{2}\right)}} \geq \frac{3\left(c^{2}+a b\right)}{a^{2} b+b^{2} a+b^{2} c+c^{2} b+a^{2} c+c^{2} a}
$$

Adding three inequalities above, we get:

$$
\sqrt[3]{\frac{a^{2}+b c}{b^{2}+c^{2}}}+\sqrt[3]{\frac{b^{2}+c a}{c^{2}+a^{2}}}+\sqrt[3]{\frac{c^{2}+a b}{a^{2}+b^{2}}} \geq \frac{3 \sqrt[3]{a b c}\left(a^{2}+b^{2}+c^{2}+a b+b c+c a\right)}{a^{2} b+b^{2} a+b^{2} c+c^{2} b+a^{2} c+c^{2} a}
$$

Thus to prove the original inequality, it suffices to prove

$$
\frac{a^{2}+b^{2}+c^{2}+a b+b c+c a}{a^{2} b+b^{2} a+b^{2} c+c^{2} b+a^{2} c+c^{2} a} \geq \frac{3}{a+b+c} .
$$

But this is equivalent to

$$
a^{3}+b^{3}+c^{3}+3 a b c \geq a^{2} b+b^{2} a+b^{2} c+c^{2} b+a^{2} c+c^{2} a
$$

which is the Schur's Inequality, and the problem is solved.

S28. Let M be a point in the plane of triangle $A B C$. Find the minimum of

$$
M A^{3}+M B^{3}+M C^{3}-\frac{3}{2} R \cdot M H^{2}
$$

where H is the orthocenter and R is the circumradius of the triangle $A B C$.

Proposed by Hung Quang Tran, Hanoi, Vietnam
Solution by Hung Quang Tran, Hanoi, Vietnam.
Solution. Using AM-GM inequality we have

$$
\frac{M A^{3}}{R}+\frac{R^{2}+M A^{2}}{2} \geq \frac{M A^{3}}{R}+R \cdot M A \geq 2 M A^{2}
$$

or

$$
\frac{M A^{3}}{R} \geq \frac{3}{2} M A^{2}-\frac{R^{2}}{2} .
$$

Analogously

$$
\frac{M B^{3}}{R} \geq \frac{3}{2} M B^{2}-\frac{R^{2}}{2}, \frac{M C^{3}}{R} \geq \frac{3}{2} M C^{2}-\frac{R^{2}}{2}
$$

Thus

$$
\begin{gathered}
\frac{M A^{3}+M B^{3}+M C^{3}}{R} \geq \frac{3}{2}\left(M A^{2}+M B^{2}+M C^{2}\right)-\frac{3}{2} R^{2} . \\
M A^{2}+M B^{2}+M C^{2}=(\overrightarrow{M O}+\overrightarrow{O A})^{2}+(\overrightarrow{M O}+\overrightarrow{O B})^{2}+(\overrightarrow{M O}+\overrightarrow{O C})^{2}= \\
3 M O^{2}+2 \overrightarrow{M O}(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C})+3 R^{2}=M O^{2}+2 \overrightarrow{M O} \cdot \overrightarrow{O H}= \\
=3 M O^{2}-\left(O M^{2}+O H^{2}-M H^{2}\right)+3 R^{2} \geq 3 R^{2}-O H^{2}+M H^{2} .
\end{gathered}
$$

Hence

$$
\frac{M A^{3}+M B^{3}+M C^{3}}{R} \geq \frac{3}{2}\left(3 R^{2}-O H^{2}+M H^{2}\right)-\frac{3}{2} R^{2}
$$

and therefore

$$
M A^{3}+M B^{3}+M C^{3}-\frac{3}{2} R \cdot M H^{2} \geq 3 R^{2}-\frac{3}{2} R \cdot O H^{2}=\text { const. }
$$

Clearly the equality holds when $M \equiv O$.

S29. Prove that for any real numbers a, b, c the following inequality holds

$$
3\left(a^{2}-a b+b^{2}\right)\left(b^{2}-b c+c^{2}\right)\left(c^{2}-a c+a^{2}\right) \geq a^{3} b^{3}+b^{3} c^{3}+c^{3} a^{3} .
$$

Proposed by Dr. Titu Andreescu, University of Texas at Dallas First solution by Zhao Bin, HUST, China.

Solution. Clearly it is enough to consider the case when $a, b, c \geq 0$. We have
$\left(a^{2}-a b+b^{2}\right)\left(b^{2}-b c+c^{2}\right)\left(c^{2}-c a+a^{2}\right)=\sum_{\text {sym }} a^{4} b^{2}-\sum_{c y c} a^{3} b^{3}-\sum_{c y c} a^{4} b c+a^{2} b^{2} c^{2}$.
The inequality is equivalent to

$$
3 \sum_{\text {sym }} a^{4} b^{2}-3 \sum_{c y c} a^{3} b^{3}-3 \sum_{c y c} a^{4} b c+3 a^{2} b^{2} c^{2} \geq 0
$$

which is also equivalent to

$$
\sum_{c y c}\left(2 c^{4}+3 a^{2} b^{2}-a b c(a+b+c)\right)(a-b)^{2} \geq 0
$$

Without loss of generality suppose $a \geq b \geq c$, and let

$$
\begin{aligned}
& S_{a}=2 a^{4}+3 b^{2} c^{2}-a b c(a+b+c), \\
& S_{b}=2 b^{4}+3 c^{2} a^{2}-a b c(a+b+c), \\
& S_{c}=2 c^{4}+3 a^{2} b^{2}-a b c(a+b+c) .
\end{aligned}
$$

We have

$$
\begin{gathered}
S_{a}=2 a^{4}+3 b^{2} c^{2}-a b c(a+b+c) \geq a^{4}+2 a^{2} b c-a b c(a+b+c) \geq 0 \\
S_{c}=2 c^{4}+3 a^{2} b^{2}-a b c(a+b+c) \geq 3 a^{2} b^{2}-a b c(a+b+c) \geq 0
\end{gathered}
$$

also we have

$$
\begin{gathered}
S_{a}+2 S_{b}=2 a^{4}+3 b^{2} c^{2}+4 b^{4}+6 c^{2} a^{2}-3 a b c(a+b+c) \geq \\
a^{4}+2 a^{2} b c+8 b^{2} c a-3 a b c(a+b+c) \geq 0, \\
S_{c}+2 S_{b}=2 c^{4}+3 a^{2} b^{2}+4 b^{4}+6 c^{2} a^{2}-3 a b c(a+b+c) \geq \\
\left(3 a^{2} b^{2}+3 a^{2} c^{2}\right)+3 a^{2} c^{2}-3 a b c(a+b+c) \geq 0 .
\end{gathered}
$$

Then if $S_{b} \geq 0$ the last inequality (1) is true. If $S_{b}<0$ then

$$
\sum_{c y c} S_{a}(b-c)^{2} \geq S_{a}(b-c)^{2}+2 S_{b}(b-c)^{2}+2 S_{b}(a-b)^{2}+S_{c}(a-b)^{2} \geq 0
$$

The inequality (1) is also true and the inequality is solved.

Second solution by Daniel Campos, Costa Rica.

Solution. Note that $x^{2}-x y+y^{2} \geq|x|^{2}-|x||y|+|y|^{2} \geq 0$ and that $|x|^{3}|y|^{3} \geq x^{3} y^{3}$, then it is enough to prove it for a, b, c nonnegative reals.

Recall the identity

$$
x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left((x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right),
$$

then the inequality is equivalent to

$$
\begin{aligned}
3 \prod_{c y c}\left((a-b)^{2}+a b\right)-3 a^{2} b^{2} c^{2} & \geq a^{3} b^{3}+b^{3} c^{3}+c^{3} a^{3}-3 a^{2} b^{2} c^{2} \\
& =\frac{1}{2}(a b+b c+c a) \sum_{c y c} c^{2}(a-b)^{2}
\end{aligned}
$$

Then, we have to prove that

$$
6 \prod_{c y c}\left((a-b)^{2}+a b\right)-6 a^{2} b^{2} c^{2}-(a b+b c+c a) \sum_{c y c} c^{2}(a-b)^{2} \geq 0
$$

or that

$$
\begin{equation*}
\sum_{c y c}(a-b)^{2}\left(2(a-c)^{2}(b-c)^{2}+3 c\left(a(b-c)^{2}+b(a-c)^{2}\right)+6 a b c^{2}-c^{2}(a b+b c+c a)\right) \tag{1}
\end{equation*}
$$

is greater or equal than 0 .
After expanding we have that

$$
2(a-c)^{2}(b-c)^{2}+3 c\left(a(b-c)^{2}+b(a-c)^{2}\right)+6 a b c^{2}-c^{2}(a b+b c+c a)
$$

equals to

$$
2 c^{4}+2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}+a b c^{2}-a^{2} b c-a b^{2} c-2 a c^{3}-2 b c^{3},
$$

or

$$
\left(c^{4}+a^{2} c^{2}-2 a c^{3}\right)+\left(c^{4}+b^{2} c^{2}-2 b c^{3}\right)+\left(a^{2} b^{2}+a^{2} c^{2}-2 a^{2} b c\right)
$$

$$
+\left(a^{2} b^{2}+b^{2} c^{2}-2 a b^{2} c\right)+a^{2} b c+a b^{2} c+a b c^{2}
$$

In the last expression, by AM-GM, each term inside the parenthesis is nonnegative, which implies (1) is a sum of nonnegative terms and this completes the proof.

Third solution by Aleksandar Ilic, Serbia.
Solution. When we multiply both sides with $(a+b)(a+c)(b+c)$ we get:

$$
3\left(a^{3}+b^{3}\right)\left(a^{3}+c^{3}\right)\left(b^{3}+c^{3}\right) \geq\left(a^{3} b^{3}+a^{3} c^{3}+b^{3} c^{3}\right)(a+b)(a+c)(b+c) .
$$

Now we get free of brackets and gather similar terms. Using symmetrical sums, we can rewrite inequality in following form:

$$
3 \sum_{\text {sym }} a^{6} b^{3}+\sum_{\text {sym }} a^{3} b^{3} c^{3} \geq \sum_{\text {sym }} a^{4} b^{4} c+\sum_{\text {sym }} a^{5} b^{4}+\sum_{\text {sym }} a^{5} b^{3} c+\sum_{\text {sym }} a^{4} b^{3} c^{2} .
$$

We use Schur's inequality:

$$
\sum_{s y m} x^{3}+\sum_{s y m} x y z \geq 2 \sum_{s y m} x^{2} y .
$$

For numbers $x=a^{2} b, y=b^{2} c$ and $z=c^{2} a$ we get:

$$
\sum_{s y m} a^{6} b^{3}+\sum_{s y m} a^{3} b^{3} c^{3} \geq \sum_{s y m} a^{4} b^{4} c+\sum_{\text {sym }} a^{5} b^{2} c^{2} .
$$

Because $[5,2,2] \succ[4,3,2]$ from Miurhead's inequality we get

$$
\sum_{s y m} a^{5} b^{2} c^{2} \geq \sum_{s y m} a^{4} b^{3} c^{2}
$$

Finally, we substitute last inequality in the one before last and add two inequalities with symmetrical sums.

$$
\begin{aligned}
\sum_{s y m} a^{6} b^{3}+\sum_{s y m} a^{3} b^{3} c^{3} & \geq \sum_{s y m} a^{4} b^{4} c+\sum_{s y m} a^{4} b^{3} c^{2} . \\
\sum_{\text {sym }} a^{6} b^{3} & \geq \sum_{s y m} a^{5} b^{4} \\
\sum_{\text {sym }} a^{6} b^{3} & \geq \sum_{\text {sym }} a^{5} b^{3} c
\end{aligned}
$$

Fourth solution by Dr. Titu Andreescu, University of Texas at Dallas.
Solution. Let us prove the following lemma:
Lemma. For any real numbers x, y we have

$$
3\left(x^{2}-x y+y^{2}\right)^{3} \geq x^{6}+x^{3} y^{3}+y^{6} .
$$

Denote $s=x+y$ and $p=x y$. Then clearly $s^{2}-4 p \geq 0$ and we have

$$
\begin{gathered}
3\left(x^{2}-x y+y^{2}\right)^{3}=3\left(s^{2}-3 p\right)^{3}=3\left(\left(s^{2}-2 p\right)-p\right)^{3}= \\
=3\left(s^{2}-2 p\right)^{3}-9\left(s^{2}-2 p\right)^{2} p+9\left(s^{2}-2 p\right) p^{2}-3 p^{3}
\end{gathered}
$$

and

$$
\begin{gathered}
x^{6}+x^{3} y^{3}+y^{6}=\left(x^{2}+y^{2}\right)\left(\left(x^{2}+y^{2}\right)^{2}-3 x^{2} y^{2}\right)+x^{3} y^{3}= \\
=\left(s^{2}-2 p\right)\left(\left(s^{2}-2 p\right)^{2}-3 p^{2}\right)+p^{3}=\left(s^{2}-2 p\right)^{3}-3\left(s^{2}-2 p\right) p^{2}+p^{3} .
\end{gathered}
$$

Thus it is enough to prove that

$$
2\left(s^{2}-2 p\right)^{3}-9\left(s^{2}-2 p\right)^{2} p+12\left(s^{2}-2 p\right) p^{2}-4 p^{3} \geq 0
$$

or

$$
2\left(s^{2}-2 p\right)^{2}\left(s^{2}-4 p\right)-5\left(s^{2}-2 p\right)^{2} p\left(s^{2}-4 p\right)+2 p\left(s^{2}-4 p\right) \geq 0 .
$$

Last inequality is equivalent to

$$
\left(s^{2}-4 p\right)\left(2\left(s^{2}-2 p\right)^{2}-5\left(s^{2}-2 p\right)^{2} p+2 p\right) \geq 0
$$

or

$$
\left(s^{2}-4 p\right)\left(2\left(s^{2}-2 p\right)\left(s^{2}-4 p\right)-p\left(s^{2}-4 p\right)\right) \geq 0 .
$$

That is $\left(s^{2}-4 p\right)^{2}\left(2 s^{2}-5 p\right) \geq 0$ and lemma is proven.
Returning back to the problem and using our lemma we have

$$
\begin{gathered}
3\left(a^{2}-a b+b^{2}\right)\left(b^{2}-b c+c^{2}\right)\left(c^{2}-a c+a^{2}\right) \geq \\
\geq\left(a^{6}+a^{3} b^{3}+b^{6}\right)^{\frac{1}{3}}\left(b^{6}+b^{3} c^{3}+c^{6}\right)^{\frac{1}{3}}\left(c^{6}+c^{3} a^{3}+a^{6}\right)^{\frac{1}{3}} \geq a^{3} b^{3}+b^{3} c^{3}+c^{3} a^{3} .
\end{gathered}
$$

Last inequality is due Holder, combining triples

$$
\left(a^{3} b^{3}, b^{6}, a^{6}\right),\left(b^{6}, b^{3} c^{3}, c^{6}\right),\left(a^{6}, c^{6}, a^{3} c^{3}\right)
$$

S30. Let $p>5$ be a prime number and let

$$
S(m)=\sum_{i=0}^{\frac{p-1}{2}} \frac{m^{2 i}}{2 i}
$$

Prove that the numerator of $S(1)$ is divisible by p if and only if the numerator of $S(3)$ is divisible by p.

Proposed by Iurie Boreico, Moldova
Solution by Iurie Boreico, Moldova
Solution. We shall consider congruence in rational numbers.
Let $\frac{a}{b}$ in lowest terms be divisible by p if p divides a.
Now we have to prove that $p \mid S(1)$ if and only if $p \mid S(3)$.
Let $0<k<p$. Then $\frac{\binom{p}{k}}{p}=\frac{(p-1)!}{k!(p-k)!}$, we have

$$
(p-k)!\equiv(-1)^{p-k}(p-1)(p-2) \ldots k .
$$

Therefore we conclude

$$
\frac{\binom{p}{k}}{p} \equiv(-1)^{k-1} \frac{1}{k}(\bmod p) .
$$

Consider the sum $Q(m)=(m+1)^{p}-(m-1)^{p}-2$. It is clear from Newton's Binomial Theorem and the result above that

$$
S(m) \equiv \frac{1}{-2 p} Q(m)(\bmod p),
$$

because

$$
\begin{gathered}
Q(m)=2 p\left(m^{p-1}+\frac{\binom{p}{3}}{p} m^{p-3}+\ldots+\frac{\binom{p}{p-2}}{p} m^{2}\right) \equiv \\
\equiv 2 p\left(m^{p-1}+(-1)^{3-1} \frac{m^{p-3}}{3}+\ldots+(-1)^{p-2-1} \frac{m^{2}}{p-2}\right) \equiv \\
\equiv-2 p\left(\frac{m^{p-1}}{p-1}+\frac{m^{p-3}}{p-3}+\ldots+\frac{m^{2}}{2}\right)(\bmod p) .
\end{gathered}
$$

Hence $p \mid S(m)$ if an only if $p^{2} \mid Q(m)$ (for $0<m<p$).
Therefore we must prove that $p^{2} \mid Q(1)$ if and only if $p^{2} \mid Q(3)$.
But $Q(1)=2^{p}-2$ and $Q(3)=4^{p}-2^{p}-2=\left(2^{p}-2\right)\left(2^{p}+1\right)$. As $2^{p}+1$ is not divisible by p, the conclusion follows.

Undergraduate

U25. Calculate the following sum $\sum_{k=0}^{\infty} \frac{2 k+1}{(4 k+1)(4 k+3)(4 k+5)}$.
Proposed by José Luis Díaz-Barrero, Barcelona, Spain and Pantelimon George Popescu, Bucharest, Romania

First solution by Vishal Lama, Southern Utah University
Solution. Let $S=\sum_{k=0}^{\infty} \frac{2 k+1}{(4 k+1)(4 k+3)(4 k+5)}$.
Using partial fractions, we note that

$$
a_{k}=\frac{2 k+1}{(4 k+1)(4 k+3)(4 k+5)}=\frac{1}{16} \cdot \frac{1}{4 k+1}+\frac{2}{16} \cdot \frac{1}{4 k+3}-\frac{3}{16} \cdot \frac{1}{4 k+5} .
$$

Let $S_{n}=\sum_{k=0}^{n} a_{k}$. Then,

$$
\begin{gathered}
S_{n}=\sum_{k=0}^{n}\left(\frac{1}{16} \cdot \frac{1}{4 k+1}+\frac{2}{16} \cdot \frac{1}{4 k+3}-\frac{3}{16} \cdot \frac{1}{4 k+5}\right)= \\
=\frac{1}{16} \sum_{k=0}^{n}\left(\frac{1}{4 k+1}-\frac{1}{4 k+5}\right)+\frac{2}{16} \sum_{k=0}^{n}\left(\frac{1}{4 k+3}-\frac{1}{4 k+5}\right)= \\
=\frac{1}{16}\left(1-\frac{1}{4 n+5}\right)+\frac{2}{16} \sum_{k=0}^{n}\left(\frac{1}{4 k+3}-\frac{1}{4 k+5}\right) .
\end{gathered}
$$

Thus, $S=\lim _{n \rightarrow \infty} S_{n}$

$$
\begin{gathered}
S=\frac{1}{16}+\frac{2}{16} \sum_{k=0}^{\infty}\left(\frac{1}{4 k+3}-\frac{1}{4 k+5}\right) \\
\Rightarrow S=\frac{1}{16}+\frac{2}{16}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}-\ldots\right) .
\end{gathered}
$$

But, then we have

$$
\begin{aligned}
& \int_{0}^{1} \frac{d t}{1+t^{2}}=\left.\tan ^{-1} t\right|_{0} ^{1}=\frac{\pi}{4},(\text { where }|t|<1) \\
& \Rightarrow \frac{\pi}{4}=\int_{0}^{1}\left(1-t^{2}+t^{4}-t^{6}+t^{8}-\ldots\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\pi}{4}=\left.\left(t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}+\frac{t^{9}}{9}-\ldots\right)\right|_{0} ^{1} \\
& \Rightarrow \frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}-\ldots=1-\frac{\pi}{4}
\end{aligned}
$$

Using the above result we get

$$
S=\frac{1}{16}+\frac{2}{16}\left(1-\frac{\pi}{4}\right)=\frac{6-\pi}{32} .
$$

Second solution by Aleksandar Ilic, Serbia.

Solution. We have to divide series into some sums with nicer form. The following identity can be interesting.

$$
\frac{2 k+1}{(4 k+1)(4 k+3)(4 k+5)}=\frac{1}{16} \cdot \frac{1}{4 k+1}+\frac{1}{8} \cdot \frac{1}{4 k+3}-\frac{3}{16} \cdot \frac{1}{4 k+5} .
$$

We get this the same way we disunite rational functions and verification is strait-forward. First and third sum are the same, except the first term, so summing from $k=0$ to infinity we have:

$$
S=\frac{1}{16} \cdot \sum_{k=0}^{\infty} \frac{1}{4 k+1}+\frac{1}{8} \sum_{k=0}^{\infty} \frac{1}{4 k+3}-\frac{3}{16} \sum_{k=0}^{\infty} \frac{1}{4 k+5} .
$$

Rearranging and grouping terms, we get:

$$
\begin{aligned}
& S=\frac{3}{16}+\left(\frac{1}{16}-\frac{3}{16}\right) \sum_{k=0}^{\infty} \frac{1}{4 k+1}+\frac{1}{8} \sum_{k=0}^{\infty} \frac{1}{4 k+3}= \\
& \quad=\frac{3}{16}-\frac{1}{8} \sum_{k=0}^{\infty}\left(\frac{1}{4 k+1}-\frac{1}{4 k+3}\right)= \\
& =\frac{3}{16}-\frac{1}{8}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots\right)=\frac{3}{16}-\frac{1}{8} \cdot \frac{\pi}{4} .
\end{aligned}
$$

Using well-known summation for number π, the series equals $\frac{6-\pi}{32} \approx$ 0.089325 .

Also solved by Ashay Burungale, India; Jean-Charles Mathieux, Dakar University, Sénégal.

U26. Let $f:[a, b] \rightarrow \mathbb{R}(0<a<b)$ be a continuous function on $[a, b]$ and differentiable on (a, b). Prove that there is a $c \in(a, b)$ such that

$$
\frac{2}{a-c}<f^{\prime}(c)<\frac{2}{b-c}
$$

Proposed by José Luis Díaz-Barrero, Barcelona, Spain and Pantelimon George Popescu, Bucharest, Romania

First solution by Bin Zhao, HUST, China.
Solution. If there is a $x_{1}, x_{2} \in(a, b)$ such $f^{\prime}\left(x_{1}\right) \geq 0, f^{\prime}\left(x_{2}\right) \leq 0$, then by Darboux's Theorem we have there is a c between x_{1}, x_{2}, such that $f^{\prime}(c)=0$, then c will satisfy the condition.

If not we may assume $f^{\prime}(x)>0, x \in(a, b)$ (because the proof will be similar for $\left.f^{\prime}(x)<0, x \in(a, b)\right)$. Then assume the contrary, which means there is not a $c \in(a, b)$ such that

$$
\frac{2}{a-c}<f^{\prime}(c)<\frac{2}{b-c} .
$$

It follows that we have $f^{\prime}(x) \geq \frac{2}{b-c}$.
Let $x_{k}=b-\frac{1}{2^{k}}(b-a), k=1,2, \ldots$. Then

$$
f\left(x_{1}\right)-f(a)=f\left(\frac{a+b}{2}\right)-f(a)=f^{\prime}\left(\xi_{1}\right) \frac{b-a}{2} \geq \frac{2}{b-\xi_{1}} \cdot \frac{b-a}{2} \geq 1
$$

and

$$
f\left(x_{k+1}\right)-f\left(x_{k}\right)=f^{\prime}\left(\xi_{k+1}\right)\left(x_{k+1}-x_{k}\right) \geq \frac{2}{b-\xi_{k+1}} \cdot \frac{b-a}{2^{k+1}} \geq 1
$$

$k=1,2, \ldots$, and $\xi_{1} \in\left(a, x_{1}\right), x_{k+1} \in\left(x_{k}, x_{k}+1\right)$.
We have $f\left(x_{n}\right)-f(a) \geq n$, which will be in contradiction with $f\left(x_{n}\right)-f(a) \leq 2 M\left(M=\max _{a \leq x \leq b} f(x)\right)$, when n is large enough. The problem is solved.

Second solution by Aleksandar Ilic, Serbia.
Solution. Notice that $\frac{1}{a-c}$ is less than zero, and number $\frac{1}{b-c}$ is greater than zero. If there exist $c \in(a, b)$ such that $f^{\prime}(c)=0$, problem is solved. From Darboux's theorem function $f^{\prime}(x)$ always has the same sign. Let $f^{\prime}(x)>0$ for every $x \in(a, b)$. Now we proceed by contradiction: assume that for every $c \in(a, b)$ we have

$$
f^{\prime}(c) \geq \frac{2}{b-c} .
$$

We can integrate inequality in interval (a, x), and get

$$
f(x)-f(a)=\int_{a}^{x} f^{\prime}(c) d c \geq \int_{a}^{x} \frac{2 d c}{b-c}=2(\ln (b-a)-\ln (b-x)) .
$$

If we let $x \rightarrow b$, left side becomes $f(b)-f(a)$ and right side is

$$
2 \ln (b-a)-\lim _{x \rightarrow b} \ln (x-b) \rightarrow+\infty
$$

This is impossible, since left side is always greater of equal then right side. Contradiction! Case $f^{\prime}(x)<0$ can be considered in similar manner.

Third solution by José Luis Díaz-Barrero, Barcelona, Spain and Pantelimon George Popescu, Bucharest, Romania.

Solution. Consider the function $F:[a, b] \rightarrow \mathbb{R}$ defined by

$$
F(x)=(x-a)(x-b) \exp [f(x)]
$$

Since F is continuous function on $[a, b]$, derivable in (a, b) and $F(a)=$ $F(b)=0$, then by Rolle's theorem there exists $c \in(a, b)$ such that $F^{\prime}(c)=$ 0 . We have

$$
F^{\prime}(x)=\left[x-b+x-a+(x-a)(x-b) f^{\prime}(x)\right] \exp [f(x)],
$$

and

$$
2 c-a-b+(c-a)(c-b) f^{\prime}(c)=0 .
$$

From the preceding and from $(0<a<b)$ immediately follows

$$
\frac{2}{a-c}<f^{\prime}(c)=\frac{a+b-2 c}{(a-c)(b-c)}<\frac{2}{b-c} .
$$

In fact, since $a-c<0$, then
$\frac{2}{a-c}<\frac{a+b-2 c}{(a-c)(b-c)} \Leftrightarrow 2>\frac{a+b-2 c}{b-c} \Leftrightarrow 2 b-2 c>a+b-2 c \Leftrightarrow b>a$,
and
$\frac{a+b-2 c}{(a-c)(b-c)}<\frac{2}{b-c} \Leftrightarrow \frac{a+b-2 c}{a-c}<2 \Leftrightarrow a+b-2 c>2 a-2 c \Leftrightarrow b>a$.
This completes the proof.

U27. Let k be a positive integer. Evaluate

$$
\int_{0}^{1}\left\{\frac{k}{x}\right\}^{2} d x
$$

where $\{a\}$ is the fractional part of a.
Proposed by Ovidiu Furdui, Western Michigan University
Solution by Ovidiu Furdui, Western Michigan University.
Solution. The integral equals

$$
k\left(\ln (2 \pi)-\gamma+1+\frac{1}{2}+\cdots+\frac{1}{k}+2 k \ln k-2 k-2 \ln (k!)\right)
$$

where $\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n\right)$ is the Euler-Mascheroni constant. If we make the substitution $\frac{k}{x}=t$, we get that

$$
\begin{gathered}
I=\int_{0}^{1}\left\{\frac{k}{x}\right\}^{2} d x=k \int_{k}^{\infty} \frac{\{t\}^{2}}{t^{2}} d t=k \sum_{l=k}^{\infty} \int_{l}^{l+1} \frac{(t-l)^{2}}{t^{2}} d t= \\
k \sum_{l=k}^{\infty} \int_{l}^{l+1}\left(1-\frac{2 l}{t}+\frac{l^{2}}{t^{2}}\right) d t=k \sum_{l=k}^{\infty}\left(1-2 l \ln \frac{l+1}{l}+\frac{l}{l+1}\right)= \\
=k \sum_{l=k}^{\infty}\left(2-2 l \ln \frac{l+1}{l}-\frac{1}{l+1}\right)
\end{gathered}
$$

Let S_{n} be the $n^{\text {th }}$ partial sum of the preceding series, i.e.,

$$
S_{n}=\sum_{l=k}^{n}\left(2-2 l \ln \frac{l+1}{l}-\frac{1}{l+1}\right) .
$$

This series is a telescoping series, so we obtain
$S_{n}=2(n-k+1)-\left(\frac{1}{k+1}+\frac{1}{k+2}+\cdots+\frac{1}{1+n}\right)-2 \sum_{l=k}^{n} l \ln \frac{l+1}{l}=$

$$
\begin{aligned}
= & 2(n-k+1)-\left(\frac{1}{k+1}+\frac{1}{k+2}+\cdots+\frac{1}{1+n}\right)- \\
& -2\left[n \ln (n+1)-k \ln k-\ln \frac{n!}{k!}\right]= \\
= & 2(n-k+1)-\left(\frac{1}{k+1}+\frac{1}{k+2}+\cdots+\frac{1}{1+n}\right)- \\
& -2 n \ln (n+1)+2 k \ln k+2 \ln (n!)-2 \ln (k!) .(1)
\end{aligned}
$$

For calculating $\lim _{n \rightarrow \infty} S_{n}$, we will make use of Stirling's formula, i.e.,

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

It follows that

$$
\begin{equation*}
2 \ln n!\approx \ln (2 \pi)+(2 n+1) \ln n-2 n \tag{2}
\end{equation*}
$$

Combining (1) and (2), we get after straightforward calculations that

$$
\begin{aligned}
& S_{n}=2(1-k)+\ln (2 \pi)+2 k \ln k-2 \ln (k!)-2 n \ln \frac{n+1}{n}- \\
& \quad-\left(\frac{1}{k+1}+\frac{1}{k+2}+\cdots+\frac{1}{1+n}-\ln n\right) \rightarrow \\
& \rightarrow-2 k+\ln (2 \pi)+2 k \ln k-2 \ln k!-\left(\gamma-1-\frac{1}{2}-\cdots-\frac{1}{k}\right) \\
& =\ln (2 \pi)-\gamma+1+\frac{1}{2}+\cdots+\frac{1}{k}+2 k \ln k-2 k-2 \ln (k!) .
\end{aligned}
$$

Thus,

$$
\int_{0}^{1}\left\{\frac{k}{x}\right\}^{2} d x=k\left(\ln (2 \pi)-\gamma+1+\frac{1}{2}+\cdots+\frac{1}{k}+2 k \ln k-2 k-2 \ln (k!)\right) .
$$

Remark. When $k=1$ the following integral formulae holds.

$$
\int_{0}^{1}\left\{\frac{1}{x}\right\}^{2} d x=\ln 2 \pi-\gamma-1.44
$$

U28. Let f be the function defined by

$$
f(x)=\sum_{n \geq 1}|\sin n| \cdot \frac{x^{n}}{1-x^{n}} .
$$

Find in a closed form a function g such that $\lim _{x \rightarrow 1^{-}} \frac{f(x)}{g(x)}=1$.
Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris No solutions received.

U29. Let A be a square matrix of order n, for which there is a positive integer k such that $k A^{k+1}=(k+1) A^{k}$. Prove that $A-I_{n}$ is invertible and find its inverse.

Proposed by Dr. Titu Andreescu, University of Texas at Dallas First solution by Bin Zhao, HUST, China.

Solution. Let $B=A-I_{n}$, then we have:

$$
k\left(B+I_{n}\right)^{k+1}=(k+1)\left(B+I_{n}\right)^{k}
$$

which is equivalent to

$$
\begin{gathered}
k\left(\sum_{i=0}^{k+1}\binom{k+1}{i} B^{i}\right)=(k+1)\left(\sum_{i=0}^{k}\binom{k}{i} B^{i}\right) \\
\Longleftrightarrow \sum_{i=1}^{k+1}\left(k\binom{k+1}{i}-(k+1)\binom{k}{i}\right) B^{i}=I_{n} \\
\Longleftrightarrow B\left(\sum_{i=0}^{k}\left(k\binom{k+1}{i+1}-(k+1)\binom{k}{i+1}\right) B^{i}\right)=I_{n} .
\end{gathered}
$$

Thus we have $A-I_{n}$ is invertible, and its inverse is

$$
\sum_{i=0}^{k}\left(k\binom{k+1}{i+1}-(k+1)\binom{k}{i+1}\right) B^{i}
$$

where $B=A-I_{n}$.
Second solution by Jean-Charles Mathieux, Dakar University, Sénégal.
Solution. You can show that $A-I_{n}$ is invertible without exhibiting its inverse. For instance, suppose that $A-I_{n}$ is not invertible, then there is a non zero vector X such that $A X=X$, since $k A^{k+1}=(k+1) A^{k}$, you have $k X=(k+1) X$ which is a contradiction.

However we can use another approach:
$k A^{k}\left(A-I_{n}\right)-\left(A^{k}-I_{n}\right)=k A^{k+1}-(k+1) A^{k}+I_{n}=I_{n}$,
and $A_{k}-I_{n}=\left(A-I_{n}\right) \sum_{i=0}^{k-1} A^{i}$.
So $\left(A-I_{n}\right)\left(k A^{k}-A^{k-1}-A^{k-2}-\cdots-I_{n}\right)=I_{n}$, which shows that $\left(A-I_{n}\right)$ is invertible and that $\left(A-I_{n}\right)^{-1}=\left(k A^{k}-A^{k-1}-A^{k-2}-\cdots-I_{n}\right)$.

U30. Let n be a positive integer. What is the largest cardinal of a finite subgroup G of $G L_{n}(\mathbb{Z})$ such that for any matrix $A \in G$, all elements of $A-I_{n}$ are even?

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Solution by Jean-Charles Mathieux, Dakar University, Sénégal.

Solution. Let us present a sketch of the proof. Let $m=|G|$. If $A \in G, A^{m}=I_{n}$ so A is diagonalisable, in $\mathcal{M}_{n}(\mathbb{C})$ and its eigenvalues λ are such that $|\lambda| \leqslant 1$.

There exist $B \in \mathcal{M}_{n}(\mathbb{Z})$ such that $A=I_{n}+2 B . B$ is also diagonalisable, in $\mathcal{M}_{n}(\mathbb{C})$ and its eigenvalues μ are such that $|\mu| \leqslant 1$. In fact, since $\mu=\frac{\lambda-1}{2},|\mu|=1$ iff $\lambda=-1$. Then you show that only 0 and 1 could be eigenvalues of B.

Reciprocally, we check that $G=\{\operatorname{diag}(\pm 1, \ldots, \pm 1)\}$ satisfies the assumptions.

So the largest cardinal of a finite subgroup G of $\mathrm{GL}_{n}(\mathbb{Z})$ such that for any matrix $A \in G$, all elements of $A-I_{n}$ are even is 2^{n}.

Olympiad

O25. For any triangle $A B C$, prove that

$$
\cos \frac{A}{2} \cot \frac{A}{2}+\cos \frac{B}{2} \cot \frac{B}{2}+\cos \frac{C}{2} \cot \frac{C}{2} \geq \frac{\sqrt{3}}{2}\left(\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}\right)
$$

Proposed by Darij Grinberg, Germany
First solution by Zhao Bin, HUST, China.
Solution. Denote a, b, c be the three side of the triangle, and

$$
a=y+z, b=z+x, c=x+y .
$$

We have:

$$
\begin{gathered}
r=\sqrt{\frac{x y z}{x+y+z}} \\
\cos \frac{A}{2}=\frac{x}{\sqrt{x^{2}+r^{2}}}, \cos \frac{B}{2}=\frac{y}{\sqrt{y^{2}+r^{2}}}, \cos \frac{C}{2}=\frac{z}{\sqrt{z^{2}+r^{2}}},
\end{gathered}
$$

and

$$
\cos \frac{A}{2}=\frac{x}{r}, \cos \frac{B}{2}=\frac{y}{r}, \cos \frac{C}{2}=\frac{z}{r}
$$

Then the inequality is equivalent to:

$$
\begin{gathered}
\frac{x^{2}}{\sqrt{4 x(x+y+z) \cdot 3(x+y)(x+z)}}+\frac{y^{2}}{\sqrt{4 y(x+y+z) \cdot 3(y+x)(y+z)}} \\
+\frac{z^{2}}{\sqrt{4 z(x+y+z) \cdot 3(z+x)(z+y)}} \geq \frac{1}{4} .
\end{gathered}
$$

But we have:

$$
\begin{aligned}
& 2 \sqrt{4 x(x+y+z) \cdot 3(x+y)(x+z)} \leq 4 x(x+y+z)+3(x+y)(x+z)= \\
& \quad=7 x(x+y+z)+3 y z, \\
& 2 \sqrt{4 y(x+y+z) \cdot 3(y+x)(y+z)} \leq 4 y(x+y+z)+3(y+x)(y+z)= \\
& \quad=7 y(x+y+z)+3 z x, \\
& 2 \sqrt{4 z(x+y+z) \cdot 3(z+x)(z+y)} \leq 4 z(x+y+z)+3(z+x)(z+y)= \\
& \quad=7 z(x+y+z)+3 x y .
\end{aligned}
$$

Thus it suffices to prove:

$$
\frac{x^{2}}{7 x(x+y+z)+3 y z}+\frac{y^{2}}{7 y(x+y+z)+3 z x}+\frac{z^{2}}{7 z(x+y+z)+3 x y} \geq \frac{1}{8} .
$$

But by Cauchy Inequality we have:

$$
\begin{gathered}
\frac{x^{2}}{7 x(x+y+z)+3 y z}+\frac{y^{2}}{7 y(x+y+z)+3 z x}+\frac{z^{2}}{7 z(x+y+z)+3 x y} \\
\geq \frac{(x+y+z)^{2}}{7(x+y+z)^{2}+3(x y+y z+z x)} \geq \frac{1}{8} .
\end{gathered}
$$

So we solved the inequality.
Second solution by David E. Narvaez, Universidad Tecnologica, Panama.

Solution. From Jensen's inequality we have that

$$
\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2} \geq \sqrt{3}
$$

and

$$
\sin \frac{A}{2} \sin \frac{B}{2}+\sin \frac{B}{2} \sin \frac{C}{2}+\sin \frac{C}{2} \sin \frac{A}{2} \geq \frac{3}{4} .
$$

thus

$$
\frac{2}{3}\left(\sum_{c y c} \tan \frac{A}{2}\right)\left(\sum_{c y c} \sin \frac{B}{2} \sin \frac{C}{2}\right) \geq \frac{\sqrt{3}}{2} .
$$

Let us assume, without loss of generality, that $A \geq B \geq C$. Then $\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right) \geq\left(\tan \frac{A}{2}+\tan \frac{C}{2}\right) \geq\left(\tan \frac{B}{2}+\tan \frac{C}{2}\right)$ and $\sin \frac{A}{2} \sin \frac{B}{2} \geq$ $\sin \frac{C}{2} \sin \frac{A}{2} \geq \sin \frac{B}{2} \sin \frac{C}{2}$ and by Chebychev's inequality we get

$$
\begin{gathered}
\sum_{c y c}\left(\tan \frac{B}{2}+\tan \frac{C}{2}\right) \sin \frac{B}{2} \sin \frac{C}{2} \geq \\
\geq \frac{1}{3}\left(\sum_{c y c}\left(\tan \frac{B}{2}+\tan \frac{C}{2}\right)\right)\left(\sum_{c y c} \sin \frac{B}{2} \sin \frac{C}{2}\right) \geq \frac{\sqrt{3}}{2},
\end{gathered}
$$

but

$$
\begin{aligned}
\left(\tan \frac{B}{2}+\tan \frac{C}{2}\right) \sin \frac{B}{2} \sin \frac{C}{2} & =\left(\frac{\sin \frac{B}{2} \cos \frac{C}{2}+\sin \frac{C}{2} \cos \frac{B}{2}}{\cos \frac{B}{2} \cos \frac{C}{2}}\right) \sin \frac{B}{2} \sin \frac{C}{2}, \\
& =\sin \frac{B+C}{2} \tan \frac{B}{2} \tan \frac{C}{2}, \\
\left(\tan \frac{B}{2}+\tan \frac{C}{2}\right) \sin \frac{B}{2} \sin \frac{C}{2} & =\cos \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} .
\end{aligned}
$$

and replacing this and similar identities for every term in the left hand side of our last inequality we have

$$
\sum_{c y c} \cos \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \geq \frac{\sqrt{3}}{2}
$$

Multiplying this inequality by $\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}=\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}$ we get
$\cos \frac{A}{2} \cot \frac{A}{2}+\cos \frac{B}{2} \cot \frac{B}{2}+\cos \frac{C}{2} \cot \frac{C}{2} \geq \frac{\sqrt{3}}{2}\left(\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}\right)$, and we are done.

O26. Consider a triangle $A B C$ and let O be its circumcenter. Denote by D the foot of the altitude from A and by E the intersection of $A O$ and $B C$. Suppose tangents to the circumcircle of triangle $A B C$ at B and C intersect at T and that $A T$ intersects this circumcircle at F. Prove that the circumcircles of triangles $D E F$ and $A B C$ are tangent.

Proposed by Ivan Borsenco, University of Texas at Dallas
Solution by David E. Narvaez, Universidad Tecnologica de Panama, Panama.

Solution. Let ω, ω^{\prime} and $\omega^{\prime \prime}$ be the circumcircles of triangles $A B C$, $T D E$ and $A D E$, respectively; let X and F^{\prime} be the points where the line $B C$ cuts the tangent to ω through A and the line $A T$. It is a well known fact that $A T$ is the symmedian corresponding to the vertex A in triangle $A B C^{*}$, and since points X, B, F^{\prime} and C are harmonic conjugates, F^{\prime} is in the polar line of X, and so is A, so $A T^{\prime}$ is the polar line of X, which implies that the tangent to ω through F passes through X.

We claim that $X A$ is tangent to $\omega^{\prime \prime}$, and from the power of the point X with respect to $\omega^{\prime \prime}$ we get that

$$
X A^{2}=X D \cdot X E
$$

which happens to show that the powers of the point X with respect to ω and ω^{\prime} are equal. Thus X is in the radical axis of ω and ω^{\prime}. Since F is a point of intersection of these circumferences and the radical axis $X F$ is tangent to ω^{\prime}, it is a tangent to ω too, and it follow that this two circumferences are tangent, as we wished to show.

To prove our claim, consider that $m \angle X A B=m \angle A C B$, because $X A$ is tangent to ω; and $m \angle B A D=m \angle E A C$, because the orthocenter and the circumcenter are isogonal conjugates. Then
$m \angle X A D=m \angle X A B+m \angle B A D=m \angle A C B+m \angle E A C=m \angle D E A$,
which is a necessary and sufficient condition for $X A$ to be tangent to ω^{\prime}.
*This follows from the fact that T is the pole of the line $B C$ with respect to ω. Thus, if M and M^{\prime} are the two points of intersection of line $T O$ with ω, and A^{\prime} is the midpoint of $B C$; then $m \angle M A M^{\prime}=90$, and from the definition of pole and polar line, T, M, A^{\prime} and M^{\prime} are harmonic conjugates. Then it follows that $A M$ and $A M^{\prime}$ are the internal and external bisectors of $\angle T A A^{\prime}$, but $A M$ is the angle bisector of $\angle B A C$, so $A T$ is the reflection of $A A^{\prime}$ with respect to to the angle bisector $A M$.

O27. Let a, b, c be positive numbers such that $a b c=4$ and $a, b, c>1$. Prove that

$$
(a-1)(b-1)(c-1)\left(\frac{a+b+c}{3}-1\right) \leq(\sqrt[3]{4}-1)^{4}
$$

Proposed by Marian Tetiva, Birlad, Romania
First solution by Aleksandar Ilic, Serbia.
Solution. Substitute $x=a-1, y=b-1$ and $z=c-1$. Now condition is that x, y, z are positive real numbers such that $(1+x)(1+y)(1+z)=4$, and we have to prove inequality:

$$
x y z \cdot \frac{x+y+z}{3} \leq(\sqrt[3]{4}-1)^{4} .
$$

From Newton's inequality we get

$$
(x y+x z+y z)^{2} \geq 3(x y \cdot x z+x y \cdot y z+x z \cdot y z)=3 x y z(x+y+z)
$$

We will prove that $x y+x z+y z \leq 9(\sqrt[3]{4}-1)^{2}$ with equivalent condition $(x+y+z)+(x y+x z+y z)+x y z=3$ using Lagrange multipliers. So, we examine symmetrical function $\Phi(x, y, z)=x y+x z+y z+\lambda(x+y+$ $z+x y+x z+y z+x y z)$ by finding partial derivatives.
$\Phi_{x}^{\prime}(x, y, z)=y+z+\lambda(1+y+z+y z)=0 \quad \Rightarrow \quad(1+x)(y+z)=-4 \lambda$
$\Phi_{y}^{\prime}(x, y, z)=x+z+\lambda(1+x+z+x z)=0 \quad \Rightarrow \quad(1+y)(x+z)=-4 \lambda$
$\Phi_{z}^{\prime}(x, y, z)=x+y+\lambda(1+x+y+x y)=0 \quad \Rightarrow \quad(1+z)(x+y)=-4 \lambda$
With some manipulations we get system:

$$
(x-y)(z-1)=0, \quad(y-z)(x-1)=0, \quad(z-x)(y-1)=0 .
$$

So, we have either $x=y=z$ or say $x=y=1$. These are only possible points for extreme values. In first case we have $x=y=z=\sqrt[3]{4}-1$ and $x y+x z+y z=9(\sqrt[3]{4}-1)^{2}$. In case $x=y=1$ we get $z=0$ and $x y+x z+y z=1<9(\sqrt[3]{4}-1)^{2}$. Points on border are only with $x=0$ or $x=3$, and these are trivial for consideration.

Second solution by Zhao Bin, HUST, China.
Solution. Let $x=a-1, y=b-1, z=c-1$, then we have $x, y, z>0$ and

$$
\begin{equation*}
x y z+x y+y z+z x+x+y+z=3 . \tag{2}
\end{equation*}
$$

The inequality is equivalent to:

$$
x y z(x+y+z) \leq 3(\sqrt[3]{4}-1)^{4}
$$

Denote $S=x y z(x+y+z)$, by

$$
(x+y+z)^{4} \geq 27 x y z(x+y+z)
$$

We have

$$
x+y+z \geq \sqrt[4]{27 S}
$$

also

$$
x y z+\frac{(\sqrt[3]{4}-1)^{2}}{3}(x+y+z) \geq 2 \sqrt{\frac{(\sqrt[3]{4}-1)^{2}}{3}} S
$$

and

$$
x y+y z+z x \geq \sqrt{3 x y z(x+y+z)}=\sqrt{3 S} .
$$

Combining the above three inequalities with equation (1), we get

$$
\left(1-\frac{(\sqrt[3]{4}-1)^{2}}{3}\right) \sqrt[4]{27 S}+2 \sqrt{\frac{(\sqrt[3]{4}-1)^{2}}{3}} S+\sqrt{3 S} \leq 3
$$

Thus it is easy to get $S \leq(\sqrt[3]{4}-1)^{4}$, and the problem is solved.

O28. Let ϕ be Euler's totient function. Find all natural numbers n such that the equation $\phi(\ldots(\phi(x)))=n(\phi$ iterated k times $)$ has solutions for any natural k.

Proposed by Iurie Boreico, Moldova

Solution by Ashay Burungale, India.

Solution. Restate the problem as: find all infinite sequences of positive integers $a_{n}, n \geq 0$ satisfying $\phi\left(a_{n}\right)=a_{n-1}$. If x is not a power of 2 , $\phi(x)$ is divisible by at least as high a power of two as x. Unless x is of the form $2^{a} * p^{b}$ with $p=3(\bmod 4)$ the power is strictly greater. Unless $p=3$ or $b=1, \phi(\phi(x))$ is divisible by a strictly larger power of 2 than x. If $\phi(x)$ is divisible by an odd prime, x is also divisible by a (possibly different) odd prime. Hence, if any a_{n} is not a power of 2 , all subsequent terms are, and the power of 2 dividing a_{i} is non-increasing for $i \geq n$, hence is ultimately constant. Hence terms are ultimately of the form $2^{a} \cdot 3^{b}$ or $2^{a} \cdot p$ with $p>3$ and $p=3(\bmod 4)$. In the second case, the sequence must be

$$
2^{a} \cdot p, 2^{a} \cdot(2 p+1), 2^{a} \cdot(4 p+3), 2^{a} \cdot(8 p+7), \ldots
$$

where $p, 2 p+1,4 p+3,8 p+7 \ldots$ are all prime. The $p^{\text {th }}$ term will be $2^{p-1}(p+1)-1 \equiv p+1-1=0(\bmod p)$, thus not prime. Hence this case cannot arise. So the possible sequences are
i) $a_{n}=2^{n}$.
ii) for each $k, a_{n}=2^{n}$ if $n<k, a_{n}=2^{k} \cdot 3^{n-k}$ if $n \geq k$.

In particular, the answer to the original form of the question is all numbers of the form $2^{a} \cdot 3^{b}$ except 3 .

O29. Let $P(x)$ be a polynomial with real coefficients of degree n with n distinct real zeros $x_{1}<x_{2}<\ldots<x_{n}$. Suppose $Q(x)$ is a polynomial with real coefficients of degree $n-1$ such that it has only one zero on each interval $\left(x_{i}, x_{i+1}\right)$ for $i=1,2, \ldots, n-1$. Prove that the polynomial $Q(x) P^{\prime}(x)-Q^{\prime}(x) P(x)$ has no real zero.

Proposed by Khoa Lu Nguyen, Massachusetts Institute of Technology
Solution by Aleksandar Ilic, Serbia.
Solution. For polynomials $P(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$ and $Q(x)=b\left(x-y_{1}\right)\left(x-y_{2}\right) \ldots\left(x-y_{n-1}\right)$ we have interlacing zeros

$$
x_{1}<y_{1}<x_{2}<y_{2}<x_{3}<\cdots<y_{n-1}<x_{n} .
$$

Consider rational function, which is defined on R except for the points $x_{1}, x_{2}, \ldots, x_{n}$

$$
f(x)=\frac{Q(x)}{P(x)}=\frac{b}{a} \cdot \frac{\left(x-y_{1}\right)\left(x-y_{2}\right) \ldots\left(x-y_{n-1}\right)}{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)} .
$$

Let $R(x)=P^{\prime}(x) Q(x)-P(x) Q^{\prime}(x)$. In points $x=x_{i}$, we have $R(x)=P^{\prime}\left(x_{i}\right) Q\left(x_{i}\right) \neq 0$, because x_{i} isn't root of polynomial $Q(x)$ and $P^{\prime}(x)$ has only roots with multiplicity one.

Lema: If $f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$ is polynomial with degree n and distinct real zeros $x_{1}<x_{2}<\cdots<x_{n}$, then

$$
f_{1}(x)=\frac{f(x)}{x-x_{1}}, f_{2}(x)=\frac{f(x)}{x-x_{2}}, \ldots, f_{n}(x)=\frac{f(x)}{x-x_{n}} .
$$

form a basis for the polynomials of degree $n-1$.
Proof: We have n polynomials, and it is enough to prove that they are linearly independent. Assume that for some real $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ we have

$$
g(x)=\sum_{i=1}^{n} \alpha_{i} \cdot f_{i}(x)=0 .
$$

For $x=x_{k}$ we get $g\left(x_{k}\right)=\alpha_{k} f_{k}\left(x_{k}\right)=0$ and thus $\alpha_{k}=0$ for every $k=\overline{1, n}$.

According to lema above if we write $P_{k}(x)=\frac{P(x)}{x-x_{k}}$ then

$$
Q(x)=c_{1} P_{1}(x)+c_{2} P_{2}(x)+\cdots+c_{n} P_{n}(x) .
$$

Evaluate $Q(x)$ at roots of polynomial $P(x)$.
$Q\left(x_{k}\right)=c_{k} P_{k}\left(x_{k}\right)=c_{k}\left(x_{k}-x_{1}\right)\left(x_{k}-x_{2}\right) \ldots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \ldots\left(x_{k}-x_{n}\right)$.
So, sign of $Q\left(x_{k}\right)$ is $\operatorname{sgn}\left(c_{k}\right)(-1)^{n-k}$. Because of interlacing property of zeros, we have that $Q\left(x_{k}\right)$ alternate in sign or equivalently that c_{k} have the same sign.

Let's calculate first derivative of $f(x)$.

$$
f^{\prime}(x)=\left(\frac{Q(x)}{P(x)}\right)^{\prime}=\left(\sum_{i=1}^{n} \frac{c_{i}}{x-x_{i}}\right)^{\prime}=-\sum_{i=1}^{n} \frac{c_{i}}{\left(x-x_{i}\right)^{2}} \neq 0 .
$$

Thus the problem is solved.

O30. Prove that equation

$$
\frac{1}{x_{1}^{2}}+\frac{1}{x_{2}^{2}}+\ldots+\frac{1}{x_{n}^{2}}=\frac{n+1}{x_{n+1}^{2}}
$$

has a solution in positive integers if and only of $n \geq 3$.
Proposed by Oleg Mushkarov, Bulgarian Academy of Sciences, Sofia
First solution by Li Zhou, Polk Community College.
Solution. If $n=1$, then the equation becomes $\frac{1}{x_{1}^{2}}=\frac{2}{x_{2}^{2}}$, which has no solution since $\sqrt{2}$ is irrational.

Consider next that $n=2$. then the equation becomes $\left(x_{2} x_{3}\right)^{2}+$ $\left(x_{1} x_{3}\right)^{2}=3\left(x_{1} x_{2}\right)^{2}$. For $1 \leq i \leq 3$, write $x_{i}=3^{n_{i}} y_{i}$, where y_{i} is not divisible by 3 . Wlog, assume that $n_{1} \geq n_{2}$. Then

$$
\begin{equation*}
3^{2\left(n_{2}+n_{3}\right)}\left(\left(y_{2} y_{3}\right)^{2}+3^{2\left(n_{1}-n_{2}\right)}\left(y_{1} y_{3}\right)^{2}\right)=3^{2\left(n_{1}+n_{2}\right)+1}\left(y_{1} y_{2}\right)^{2} . \tag{3}
\end{equation*}
$$

Since 1 is the quadratic residue modulo 3 , $\left(y_{2} y_{3}\right)^{2}+3^{2\left(n_{1}-n_{2}\right)}\left(y_{1} y_{3}\right)^{2} \equiv 1,2$ $(\bmod 3)$. Hence the exponents of 3 in the two sides of (3) cannot equal.

Finally, consider $n \geq 3$. Starting from $5^{2}=4^{2}+3^{2}$, we get $\frac{1}{12^{2}}=$ $\frac{1}{15^{2}}+\frac{1}{20^{2}}$ by dividing by $3^{2} 4^{2} 5^{2}$. Multiplying by $\frac{1}{12^{2}}$, we get

$$
\begin{aligned}
\frac{1}{12^{4}}=\frac{1}{12^{2} 15^{2}}+\frac{1}{12^{2} 20^{2}} & =\frac{1}{12^{2} 15^{2}}+\left(\frac{1}{15^{2}}+\frac{1}{20^{2}}\right) \frac{1}{20^{2}} \\
& =\frac{1}{(12 \cdot 15)^{2}}+\frac{1}{(15 \cdot 20)^{2}}+\frac{1}{(20 \cdot 20)^{2}} .
\end{aligned}
$$

Hence, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(12 \cdot 15,15 \cdot 20,20^{2}, 2 \cdot 12^{2}\right)$ is a solution for $n=3$. Inductively, assume that x_{1}, \ldots, x_{n+1} are solutions to

$$
\frac{1}{x_{1}^{2}}+\cdots+\frac{1}{x_{n}^{2}}=\frac{n+1}{x_{n+1}^{2}}
$$

for some $n \geq 3$. Then

$$
\frac{1}{x_{1}^{2}}+\cdots+\frac{1}{x_{n}^{2}}+\frac{1}{x_{n+1}^{2}}=\frac{n+2}{x_{n+1}^{2}}
$$

completing the proof.

Second solution by Aleksandar Ilic, Serbia.

Solution. For $n=1$, we get equation $\sqrt{2} x_{1}=x_{2}$, and since $\sqrt{2}$ is irrational number - there are no solution in this case. For $n=2$, we have equation $x_{2}^{2} x_{3}^{2}+x_{1}^{2} x_{3}^{2}=3 x_{1}^{2} x_{2}^{2}$ or equivalently $a^{2}+b^{2}=3 c^{2}$ with obvious substitution. We can assume that numbers a, b and c are all different from zero and that they are relatively prime, meaning $\operatorname{gcd}(a, b, c)=1$. Square of an integer is congruent to 0 or 1 modulo 3 , and hence both a and b are divisible by 3 . Now, number c is also divisible by 3 - and we get contradiction.

For $n=3$, we have at least one solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(3,3,6,4)$ or

$$
\frac{1}{3^{2}}+\frac{1}{3^{3}}+\frac{1}{6^{2}}=\frac{4}{4^{2}}
$$

For every integer $n>3$, we can use solution for $n=3$, and get:

$$
\frac{1}{3^{2}}+\frac{1}{3^{3}}+\frac{1}{6^{2}}+\underbrace{\frac{1}{4^{2}}+\cdots+\frac{1}{4^{2}}}_{n-3}=\frac{4}{4^{2}}+\frac{n-3}{4^{2}}=\frac{n+1}{4^{2}} .
$$

Also solved by Ashay Burungale, India.

