
Solutions for Mathematical Reflections 5(2006)

Juniors

J25. Let k be a real number different from 1. Solve the system of equations
(x + y + z)(kx + y + z) = k3 + 2k2

(x + y + z)(x + ky + z) = 4k2 + 8k

(x + y + z)(x + y + kz) = 4k + 8 .

Proposed by Dr. Titu Andreescu, University of Texas at Dallas

First solution by José Luis Dı́az-Barrero and José Gibergans-Báguena,
Universitat Politècnica de Catalunya, Barcelona, Spain.

Solution. Setting s = x + y + z and adding up the three equations
given, we obtain

s(kx + 2x + ky + 2y + kz + 2z) = k3 + 6k2 + 12k + 8,

(x + y + z)(k + 2) = (k + 2)3,

and
s = ±(k + 2).

If x + y + z = 0, then k = −2, also if k = −2 we get x = y = z = 0.

Otherwise we distinguish the cases (i) when s = k + 2 and (ii) when
s = −(k + 2).

(i) If s = (k + 2), then (k + 2)(kx + y + z) = k2(k + 2)
(k + 2)(x + ky + z) = 4k(k + 2)
(k + 2)(x + y + kz) = 4(k + 2)

,

or equivalently  kx + y + z = k2

x + ky + z = 4k
x + y + kz = 4

and using x + y + z = k + 2 we get

x =
(k − 2)(k + 1)

k − 1
, y =

3k − 2

k − 1
, z =

−(k − 2)

k − 1
.
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(ii) If s = −(k + 2), then

x = −(k − 2)(k + 1)

k − 1
, y = −3k − 2

k − 1
, z =

k − 2

k − 1

is the solution obtained. Notice that in both cases we have k 6= 1, as
stated, and we are done.

Second solution by Ashay Burungale, India.

Solution. We observe that x + y + z = 0 forces k = −2.
The case k = −2 forces kx + y + z = x + ky + z = x + y + kz = 0, which
gives us x = y = z = 0. Assume that x + y + z to be nonzero and k
different from −2.

Dividing the third equation by the second, we get

x + ky + z

x + y + kz
= k, and thus x(k − 1) = z(1− k2).

As k 6= 1, it follows that x = −(k + 1) · z. (1)

Dividing the first equation by the second, we get

kx + y + z

x + ky + z
=

k

4
, and thus z(k − 4) + y(k2 − 4) = 3kx.

Using first relation (1) we have

z(k − 4) + y(k2 − 4) = −3k(k + 1)z,

y(k2 − 4) = z(−3k2 − 4k + 4),

y(k − 2)(k + 2) = −z(3k − 2)(k + 2).

Thus we have y = −3k−2
k−2

· z. (2)

Plugging results (1) and (2) in the third equation, we get

z2(−(k + 1)− 3k − 2

k − 2
+ 1)(−(k + 1)− 3k − 2

k − 2
+ k) = 4(k + 2),

z2(k2 + k − 2)(4(k − 1)) = 4(k + 2)(k − 2)2.

Therefore z = ∓k−2
k−1

and x = ± (k−2)(k+1)
k−1

, y = ±3k−2
k−1

.
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J26. A line divides an equilateral triangle into two parts with the
same perimeter and having areas S1 and S2, respectively. Prove that

7

9
≤ S1

S2

≤ 9

7

Proposed by Bogdan Enescu, ”B.P. Hasdeu” National College,
Romania

First solution by Vishal Lama, Southern Utah University.

Solution. Without loss of generality, we may assume that the given
equilateral triangle ABC has sides of unit length, AB = BC = CA = 1.
If the line cuts the triangle in two triangles them clearly S1

S2
= 1.

We may assume that the line cuts side AB at D and AC at E. Let the
area of triangle ADE = S1 and the area of quadrilateral BDEC = S2.

Then, S1 + S2 = area of equilateral triangle ABC =
√

3
4

.

Let BD = x and CE = y. Then, AD = 1 − x and AE = 1 − y.
Since the regions with areas S1 and S2 have equal perimeter, we must
have BD + BC + CE = AD + AE.

x + 1 + y = (1− x) + (1− y), ⇒ x + y =
1

2
.

Now, area of triangle ADE = S1 = 1
2
· AD · AE · sin(∠DAE),

S1 =
1

2
(1− x)(1− y) sin 60◦, ⇒ S1 =

√
3

4
(1− x)(

1

2
+ x).

Denote a = S2

S1
> 0, we get that

S1

S1 + S2

=
1

1 + a
= (1− x)(

1

2
+ x),

which after some simplification yields

2x2 − x +
1− a

1 + a
= 0.

The above quadratic equation in x has real roots and the discriminant
should be greater or equal to zero. Thus

∆ = 1− 4 · 2 ·
(

1− a

1 + a

)
=

9a− 7

a + 1
≥ 0.
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Therefore a ≥ 7
9

or S2

S1
≥ 7

9
. Changing our the notations: area of triangle

ADE = S2 and area of quadrilateral BDEC = S1 we get that S1

S2
≥ 7

9
.

Thus
7

9
≤ S1

S2

≤ 9

7
.

Second solution by Daniel Campos Salas, Costa Rica.

Solution. Suppose without loss of generality, that the triangle has

sidelength 1. Note that this implies S1 + S2 =

√
3

4
. The line can divide

the triangle into a triangle and a quadrilateral or two congruent triangles.
The second case is obvious. Since the inequality is symmetric with respect
to S1 and S2 we can assume that S2 is the area of the new triangle.

Let l be one of the sides of the new triangle which belongs to perimeter
of the equilateral triangle. The other side of the new triangle in the

perimeter equals

(
3

2
− l

)
. Then, S2 = l

(
3

2
− l

) √
3

4
. Note that the

inequality is equivalent to

16

9
≤ S1 + S2

S2

≤ 16

7
, or

7

16
≤ l

(
3

2
− l

)
≤ 9

16
. (1)

From the inequality

(
l − 3

4

)2

≥ 0, it follows that l

(
3

2
− l

)
≤ 9

16
,

and this proves the RHS inequality of (1). Since l and

(
3

2
− l

)
are

smaller than the equilateral triangle sides it follows that l,

(
3

2
− l

)
≤ 1,

that implies that l ∈
[
1

2
, 1

]
. Now, the LHS inequality of (1) is equivalent

to

0 ≥ 16l2 − 24l + 7,

which holds if and only if l ∈

[
3−

√
2

4
,
3 +

√
2

4

]
, which is true

because
3−

√
2

4
<

1

2
and 1 <

3 +
√

2

4
, and we are done.

Mathematical Reflections 6 (2006) 4



J27. Consider points M, N inside the triangle ABC such that ∠BAM =
∠CAN,∠MCA = ∠NCB, ∠MBC = ∠CBN . M and N are isogonal
points. Suppose BMNC is a cyclic quadrilateral. Denote T the circum-
center of BMNC, prove that MN ⊥ AT .

Proposed by Ivan Borsenco, University of Texas at Dallas

First solution by Aleksandar Ilic, Serbia.

Solution. As T is circumcenter of quadrilateral BMNC, we have
TM = TN . We will prove that AN = AM , and thus get two isosceles
triangles over base MN meaning AT ⊥ MN . We have to prove that
]ANM = ]AMN . Because BMNC is cyclic quadrilateral we have
]MCN = ]NBM . Let’s calculate angles:

]ANM = 360o − (]CNM + ]ANC) = ]CBM + ]ACN + ]CAN.

]AMN = 360o − (]BMN + ]AMB) = ]BCN + ]ABM + ]BAM.

We know that ]CAN = ]BAM .

From the equality ]BCN+]ABM = (]BCM+]MCN)+]ABM =
]ACN + (]MBN + ]NBC) = ]ACN + ]CBM we conclude that
]ANM = ]AMN .

Second solution by Prachai K, Thailand.

Solution. Using Sine Theorem we get

AM

sin ∠ABM
=

BM

sin ∠BAM
,

AN

sin ∠ACN
=

CN

sin ∠CAN
.

As ∠BAM = ∠CAN we have

AM

AN
=

BM · sin ∠ABM

CN · sin ∠ACN
=

2R · sin ∠BCM · sin ∠ABM

2R · sin ∠CBN · sin ∠ACN
.

Using the fact that ∠BCM = ∠ACN and ∠CBN = ∠ABM we get

AM

AN
=

sin ∠ACN · sin ∠ABM

sin ∠ABM · sin ∠ACN
= 1.

Clearly the perpendiculars form A and T to MN both bisect MN , it
follows that AT ⊥ MN .

Also solved by Ashay Burungale, India.
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J28. Let p be a prime such that p ≡ 1(mod 3) and let q = b2p
3
c. If

1

1 · 2
+

1

3 · 4
+ · · ·+ 1

(q − 1)q
=

m

n

for some integers m and n, prove that p|m.

Proposed by Dr. Titu Andreescu, University of Texas at Dallas

First solution by Aleksandar Ilic, Serbia.

Solution. Let p = 3k + 1 and q = b2p
3
c = 2k. When considering

equation modulo p, we have to prove that it is congruent with zero mod
p.

S =
1

1 · 2
+

1

3 · 4
+ . . . +

1

(q − 1) · q
=

1

1
− 1

2
+

1

3
− 1

4
+ · · ·+ 1

q − 1
− 1

q
.

Now regroup fractions, and substitute q = 2k.

S =

q∑
i=1

1

i
− 2

q/2∑
i=1

1

2i
=

2k∑
i=1

1

i
−

k∑
i=1

1

i
.

From Wolstenholme’s theorem we get that:

1

1
+

1

2
+ · · ·+ 1

p− 1
≡ 0(mod p2).

Because −i ≡p p− i, we have:

S =

p−1∑
i=1

1

i
−

p−1∑
i=2k+1

1

i
+

k∑
i=1

1

p− i
≡p 0−

3k∑
i=2k+1

1

i
+

k∑
i=1

1

3k + 1− i
≡ 0(mod p).

Second solution by Ashay Burungale, India.

Solution. Note that p = 1(mod 6). Let p = 6k + 1, thus q = b2p
3
c =

4k. We have

m

n
=

1

1 · 2
+

1

3 · 4
+ . . .+

1

(q − 1) · q
=

1

1 · 2
+

1

3 · 4
+ · · ·+ 1

(4k − 1) · 4k
=

1+
1

3
+ . . .+

1

4k − 1
−
(

1

2
+

1

4
+ . . . +

1

4k

)
=

1

2k + 1
+

1

2k + 2
+ . . .+

1

4k
.
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Grouping
(

1
2k+1

, 1
4k

)
,
(

1
2k+2

, 1
4k−1

)
,...,

(
1
3k

, 1
3k+1

)
we get

m

n
=

(
1

2k + 1
+

1

4k

)
+

(
1

2k + 2
+

1

4k − 1

)
+ . . . +

(
1

3k
+

1

3k + 1

)
=

=
p

(2k + 1)(4k)
+

p

(2k + 2)(4k − 1)
+ . . . +

p

(3k)(3k + 1)
.

Because p is not divisible by any number from {2k + 1, 2k + 2, ..., 4k}
we get that p|m.
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J29. Find all rational solutions of the equation{
x2
}

+ {x} = 0.99

Proposed by Bogdan Enescu, ”B.P. Hasdeu” National College,
Romania

Solution by Daniel Campos, Costa Rica.

Solution. The equation is equivalent to

x2 + x− 0.99 = bx2c+ bxc.

Let x =
a

b
, with a, b coprime integers and b greater than 0. Then,

100a2 + 100ab− 99b2

100b2
is an integer. This implies that

100|99b2 and b2|100a(a + b).

The first one implies that 100|b2, while the second, since (a, b) = 1,
implies that b2|100. Then, b = 10.

Then, a2 + 10a− 99 ≡ 0 (mod 100). Note that

a2 + 10a− 99 ≡ a2 + 10a− 299 ≡ (a− 13)(a + 23) ≡ 0 (mod 100).

This implies that a is odd, and that (a − 13)(a + 23) ≡ 0 (mod 25).
Since a−13 6≡ a+23 (mod 5), it follows that a = 25k+13 or a = 25k+2.

Since a is odd, it follows that it is of the form 50k + 13 or 50k + 27.

It is easy to verify that for any rational number of the form 5k +
13

10
and

5k +
27

10
, with k integer, the equality holds.
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J30. Let a, b, c be three nonnegative real numbers. Prove the inequal-
ity

a3 + abc

b + c
+

b3 + abc

a + c
+

c3 + abc

a + b
≥ a2 + b2 + c2.

Proposed by Cezar Lupu, University of Bucharest, Romania

First solution by Zhao Bin, HUST, China.

Solution. Without loss of generality a ≥ b ≥ c, the inequality is
equivalent to:

a

b + c
(a− b)(a− c) +

b

c + a
(b− a)(b− c) +

c

a + b
(c− a)(c− b) ≥ 0.

But by a
b+c

≥ b
c+a

and (a− b)(a− c) ≥ 0, we have

a

b + c
(a− b)(a− c) +

b

c + a
(b− a)(b− c) ≥

≥ b

c + a
(a− b)(a− c) +

b

c + a
(b− a)(b− c) ≥ b

c + a
(a− b)2 ≥ 0.

Also we have c

a + b
(c− a)(c− b) ≥ 0.

Thus we solve the problem.

Second solution by Aleksandar Ilic, Serbia.

Solution.
Rewrite the inequality in the following form:(

a3 + abc

b + c
− a2

)
+

(
b3 + abc

a + c
− b2

)
+

(
c3 + abc

a + b
− c2

)
≥ 0.

Now combine expressions in brackets to get:

a(a− b)(a− c)

b + c
+

b(b− a)(b− c)

a + c
+

c(c− a)(c− b)

a + b
≥ 0.

When multiply both sides of equation with (a + b)(b + c)(c + a) we
get Schur’s inequality for numbers a2, b2 and c2 and r = 1

2
.

a(a2 − b2)(a2 − c2) + b(b2 − a2)(b2 − c2) + c(c2 − a2)(c2 − b2) ≥ 0.

Also solved by Daniel Campos, Costa Rica; Ashay Burungale, India;
Prachai K, Thailand.
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Seniors

S25. Prove that in any acute-angled triangle ABC,

cos3 A + cos3 B + cos3 C + cos A cos B cos C ≥ 1

2

Proposed by Dr. Titu Andreescu, University of Texas at Dallas

First solution by Prachai K, Thailand.

Solution. Let x = cos A, y = cos B, z = cos C. It is well known fact
that

cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1,

and therefore x2 + y2 + z2 + 2xyz = 1.

Also from Jensen Inequality it is not difficult to find that

cos A · cos B · cos C ≤ 1

8
.

It follows that xyz ≤ 1
8

and x2 + y2 + z2 ≥ 3
4
.

Using the Power-Mean inequality we have

(x3 + y3 + z3)2 ≥ 1

3
(x2 + y2 + z2)3 ≥ 1

4
(x2 + y2 + z2)2,

or
2(x3 + y3 + z3) ≥ x2 + y2 + z2.

Thus
2(x3 + y3 + z3) + 2xyz ≥ x2 + y2 + z2 + 2xyz = 1,

and we are done.

Second solution by Hung Quang Tran, Hanoi National University,
Vietnam.

Solution. Using the equality

cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1,

the initial inequality becomes equivalent to

2(cos3 A + cos3 B + cos3 C) ≥ cos2 A + cos2 B + cos2 C.
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Using the fact that triangle ABC is acute angled we get
cos A, cos B, cos C ≥ 0, and therefore

(1− 2 cos A)2 cos A + (1− 2 cos B)2 cos B + (1− 2 cos C)2 cos C ≥ 0

4(cos3 A+cos3 B+cos3 C)−4(cos2 A+cos2 B+cos2 C)+(cos A+cos B+cos C) ≥ 0,

2(cos3 A+cos3 B+cos3 C) ≥ 2(cos2 A+cos2 B+cos2 C)−1

2
(cos A+cos B+cos C).

Thus it is enough to prove

2(cos2 A+cos2 B+cos2 C)−1

2
(cos A+cos B+cos C) ≥ cos2 A+cos2 B+cos2 C,

or
2(cos2 A + cos2 B + cos2 C) ≥ cos A + cos B + cos C.

Using well known inequalities

cos 2A + cos 2B + cos 2C ≥ −3

2
and cos A + cos B + cos C ≤ 3

2
,

we have

(1 + cos 2A) + (1 + cos 2B) + (1 + cos 2C) ≥ 3

2
,

or

2(cos2 A + cos2 B + cos2 C) ≥ 3

2
≥ cos A + cos B + cos C,

and we are done.

Also solved by Daniel Campos, Costa Rica; Zhao Bin, HUST, China.
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S26. Consider a triangle ABC and let Ia be the center of the circle
that touches the side BC at A′ and the extensions of sides AB and AC
at C ′ and B′, respectively. Denote by X the second intersections of the
line A′B′ with the circle with center B and radius BA′ and by K the
midpoint of CX. Prove that K lies on the midline of the triangle ABC
corresponding to AC.

Proposed by Liubomir Chiriac, Princeton University

First solution by David E. Narvaez, Universidad Tecnologica de Panama,
Panama.

Solution. Let M be the midpoint of AC and let D be the second
point of intersection of BC with the circle with center B and radius BA′.
It follows, from the definition of K, that KM is parallel to XB, so it
will be sufficient to show that XB is parallel to AC.

Since ∠XBD is a central angle, we have that

∠XBD = 2 (∠XA′D) = 2 (∠CA′B′) = 2

(
C

2

)
= ∠ACB,

which implies that XB is parallel to AC.

Second solution by Zhao Bin, HUST, China.

Solution. Denote D the midpoint of BC. Then clearly DK is the
midline of the triangle BXC, corresponding to BX. Also we have

∠BXA′ = ∠BA′X = ∠B′A′C = ∠CB′A′.

Hence
BX ‖ B′C ‖ AC,

and thus it is not difficult to see that the line DK is the midline of
the triangle ABC corresponding to AC,so K lines on the midline of the
triangle ABC corresponding to AC. The problem is solved.

Also solved by Aleksandar Ilic, Serbia; Prachai K, Thailand.
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S27. Let a, b, c be nonnegative real numbers, no two of which are zero.
Prove that

3

√
a2 + bc

b2 + c2
+

3

√
b2 + ca

c2 + a2
+

3

√
c2 + ab

a2 + b2
≥ 9 3

√
abc

a + b + c

Proposed by Pham Huu Duc, Australia

First solution by Ho Phu Thai, Da Nang, Vietnam.

Solution. By the AM-HM inequality:

3

√
a2 + bc

b2 + c2
+

3

√
b2 + ca

c2 + a2
+

3

√
c2 + ab

a2 + b2
≥ 9

3

√
b2+c2

a2+bc
+ 3

√
c2+a2

b2+ca
+ 3

√
a2+b2

c2+ab

.

It suffices to prove that:

a + b + c
3
√

abc
≥ 3

√
b2 + c2

a2 + bc
+

3

√
c2 + a2

b2 + ca
+

3

√
a2 + b2

c2 + ab
.

By Holder’s inequality:(
3

√
b2 + c2

a2 + bc
+

3

√
c2 + a2

b2 + ca
+

3

√
a2 + b2

c2 + ab

)3

≤

≤ 6(a2 + b2 + c2)

(
1

a2 + bc
+

1

b2 + ca
+

1

c2 + ab

)
.

We are now to show that:

(a + b + c)3

abc
≥ 6(a2 + b2 + c2)

(
1

a2 + bc
+

1

b2 + ca
+

1

c2 + ab

)

⇔ (a + b + c)3

abc
− 27 ≥ 3

∑
cyc

(
2a2 + 2b2 + 2c2

c2 + ab
− 3

)

⇔
1
2
(a + b + c)

∑
cyc(b− c)2 + 3

∑
cyc a(b− c)2

abc
≥

≥ 3
∑
cyc

3(b− c)2

2(a2 + bc)
+ 3

∑
cyc

(b− c)2 (b + c)(b + c− a)

2(b2 + ca)(c2 + ab)

⇔
∑
cyc

(b− c)2

(
7a + b + c

abc
− 9

a2 + bc
− 3(b + c)(b + c− a)

(b2 + ca)(c2 + ab)

)
≥ 0.
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Consider the expressions Sa, Sb, Sc before (b − c)2, (c − a)2, (a − b)2,
respectively. We will point Sa, Sb, Sc ≥ 0 out.

Sa =
7a + b + c

abc
− 9

a2 + bc
− 3(b + c)(b + c− a)

(b2 + ca)(c2 + ab)
≥ 0

⇔ 7a4b3 + 7a4c3 + 7a5bc + ab5c + abc5 + a3b4 + a3c4 + b4c3 + b3c4+

3a3b2c2+3a2b3c2+3a2b2c3+2a4b2c+2a4bc2−4ab3c3−2a2b4c−2a2bc4 ≥ 0.

This is obviously true, by AM-GM:

b4c3 + b3c4 + a2b3c2 + a2b2c3 ≥ 4ab3c3,

a3b4 + ab5c + a2b3c2 ≥ 3a2b4c,

a3c4 + abc5 + a2b2c3 ≥ 3a2bc4.

Similarly, Sb, Sc ≥ 0 for any numbers a, b, c > 0.
Our proof is complete. Equality occurs if and only if a = b = c.

Second solution by Zhao Bin, HUST, China.

Solution. If one of a, b, c is zero, then clearly the inequality is true.
We may assume a, b, c > 0.

By AM-GM inequality we have:

3
√

abc
3
√

a2 + bc
3
√

a2 + bc
3
√

b2 + c2 = 3
√

b(a2 + bc) 3
√

c(a2 + bc) 3
√

a(b2 + c2)

≤ a2b + b2a + b2c + c2b + a2c + c2a

3

Thus:

3

√
a2 + bc

abc(b2 + c2)
=

a2 + bc
3
√

abc 3
√

a2 + bc 3
√

a2 + bc 3
√

b2 + c2
≥

3(a2 + bc)

a2b + b2a + b2c + c2b + a2c + c2a
.

Analogously,

3

√
b2 + ca

abc(c2 + a2)
≥ 3(b2 + ca)

a2b + b2a + b2c + c2b + a2c + c2a
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and

3

√
c2 + ab

abc(a2 + b2)
≥ 3(c2 + ab)

a2b + b2a + b2c + c2b + a2c + c2a

Adding three inequalities above, we get:

3

√
a2 + bc

b2 + c2
+

3

√
b2 + ca

c2 + a2
+

3

√
c2 + ab

a2 + b2
≥ 3 3

√
abc(a2 + b2 + c2 + ab + bc + ca)

a2b + b2a + b2c + c2b + a2c + c2a
.

Thus to prove the original inequality, it suffices to prove

a2 + b2 + c2 + ab + bc + ca

a2b + b2a + b2c + c2b + a2c + c2a
≥ 3

a + b + c
.

But this is equivalent to

a3 + b3 + c3 + 3abc ≥ a2b + b2a + b2c + c2b + a2c + c2a,

which is the Schur’s Inequality, and the problem is solved.
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S28. Let M be a point in the plane of triangle ABC. Find the
minimum of

MA3 + MB3 + MC3 − 3

2
R ·MH2,

where H is the orthocenter and R is the circumradius of the triangle
ABC.

Proposed by Hung Quang Tran, Hanoi, Vietnam

Solution by Hung Quang Tran, Hanoi, Vietnam.

Solution. Using AM-GM inequality we have

MA3

R
+

R2 + MA2

2
≥ MA3

R
+ R ·MA ≥ 2MA2,

or
MA3

R
≥ 3

2
MA2 − R2

2
.

Analogously

MB3

R
≥ 3

2
MB2 − R2

2
,

MC3

R
≥ 3

2
MC2 − R2

2
.

Thus

MA3 + MB3 + MC3

R
≥ 3

2
(MA2 + MB2 + MC2)− 3

2
R2.

MA2 + MB2 + MC2 = ( ~MO + ~OA)2 + ( ~MO + ~OB)2 + ( ~MO + ~OC)2 =

3MO2 + 2 ~MO( ~OA + ~OB + ~OC) + 3R2 = MO2 + 2 ~MO · ~OH =

= 3MO2 − (OM2 + OH2 −MH2) + 3R2 ≥ 3R2 −OH2 + MH2.

Hence

MA3 + MB3 + MC3

R
≥ 3

2
(3R2 −OH2 + MH2)− 3

2
R2,

and therefore

MA3 + MB3 + MC3 − 3

2
R ·MH2 ≥ 3R2 − 3

2
R ·OH2 = const.

Clearly the equality holds when M ≡ O.
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S29. Prove that for any real numbers a, b, c the following inequality
holds

3(a2 − ab + b2)(b2 − bc + c2)(c2 − ac + a2) ≥ a3b3 + b3c3 + c3a3.

Proposed by Dr. Titu Andreescu, University of Texas at Dallas

First solution by Zhao Bin, HUST, China.

Solution. Clearly it is enough to consider the case when a, b, c ≥ 0.
We have

(a2−ab+b2)(b2−bc+c2)(c2−ca+a2) =
∑
sym

a4b2−
∑
cyc

a3b3−
∑
cyc

a4bc+a2b2c2.

The inequality is equivalent to

3
∑
sym

a4b2 − 3
∑
cyc

a3b3 − 3
∑
cyc

a4bc + 3a2b2c2 ≥ 0,

which is also equivalent to∑
cyc

(
2c4 + 3a2b2 − abc(a + b + c)

)
(a− b)2 ≥ 0.

Without loss of generality suppose a ≥ b ≥ c, and let

Sa = 2a4 + 3b2c2 − abc(a + b + c),

Sb = 2b4 + 3c2a2 − abc(a + b + c),

Sc = 2c4 + 3a2b2 − abc(a + b + c).

We have

Sa = 2a4 + 3b2c2 − abc(a + b + c) ≥ a4 + 2a2bc− abc(a + b + c) ≥ 0,

Sc = 2c4 + 3a2b2 − abc(a + b + c) ≥ 3a2b2 − abc(a + b + c) ≥ 0,

also we have

Sa + 2Sb = 2a4 + 3b2c2 + 4b4 + 6c2a2 − 3abc(a + b + c) ≥

a4 + 2a2bc + 8b2ca− 3abc(a + b + c) ≥ 0,

Sc + 2Sb = 2c4 + 3a2b2 + 4b4 + 6c2a2 − 3abc(a + b + c) ≥
(3a2b2 + 3a2c2) + 3a2c2 − 3abc(a + b + c) ≥ 0.
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Then if Sb ≥ 0 the last inequality (1) is true. If Sb < 0 then∑
cyc

Sa(b− c)2 ≥ Sa(b− c)2 + 2Sb(b− c)2 + 2Sb(a− b)2 + Sc(a− b)2 ≥ 0.

The inequality (1) is also true and the inequality is solved.

Second solution by Daniel Campos, Costa Rica.

Solution. Note that x2 − xy + y2 ≥ |x|2 − |x||y|+ |y|2 ≥ 0 and that
|x|3|y|3 ≥ x3y3, then it is enough to prove it for a, b, c nonnegative reals.

Recall the identity

x3 + y3 + z3 − 3xyz =
1

2
(x + y + z)((x− y)2 + (y − z)2 + (z − x)2),

then the inequality is equivalent to

3
∏
cyc

((a− b)2 + ab)− 3a2b2c2 ≥ a3b3 + b3c3 + c3a3 − 3a2b2c2

=
1

2
(ab + bc + ca)

∑
cyc

c2(a− b)2.

Then, we have to prove that

6
∏
cyc

((a− b)2 + ab)− 6a2b2c2 − (ab + bc + ca)
∑
cyc

c2(a− b)2 ≥ 0,

or that∑
cyc

(a−b)2(2(a−c)2(b−c)2+3c(a(b−c)2+b(a−c)2)+6abc2−c2(ab+bc+ca))

(1)
is greater or equal than 0.

After expanding we have that

2(a− c)2(b− c)2 + 3c(a(b− c)2 + b(a− c)2) + 6abc2 − c2(ab + bc + ca)

equals to

2c4 + 2a2b2 + 2a2c2 + 2b2c2 + abc2 − a2bc− ab2c− 2ac3 − 2bc3,

or

(c4 + a2c2 − 2ac3) + (c4 + b2c2 − 2bc3) + (a2b2 + a2c2 − 2a2bc)
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+(a2b2 + b2c2 − 2ab2c) + a2bc + ab2c + abc2.

In the last expression, by AM-GM, each term inside the parenthesis
is nonnegative, which implies (1) is a sum of nonnegative terms and this
completes the proof.

Third solution by Aleksandar Ilic, Serbia.

Solution. When we multiply both sides with (a+ b)(a+ c)(b+ c) we
get:

3(a3 + b3)(a3 + c3)(b3 + c3) ≥ (a3b3 + a3c3 + b3c3)(a + b)(a + c)(b + c).

Now we get free of brackets and gather similar terms. Using symmet-
rical sums, we can rewrite inequality in following form:

3
∑
sym

a6b3 +
∑
sym

a3b3c3 ≥
∑
sym

a4b4c +
∑
sym

a5b4 +
∑
sym

a5b3c +
∑
sym

a4b3c2.

We use Schur’s inequality:∑
sym

x3 +
∑
sym

xyz ≥ 2
∑
sym

x2y.

For numbers x = a2b, y = b2c and z = c2a we get:∑
sym

a6b3 +
∑
sym

a3b3c3 ≥
∑
sym

a4b4c +
∑
sym

a5b2c2.

Because [5, 2, 2] � [4, 3, 2] from Miurhead’s inequality we get∑
sym

a5b2c2 ≥
∑
sym

a4b3c2.

Finally, we substitute last inequality in the one before last and add
two inequalities with symmetrical sums.∑

sym

a6b3 +
∑
sym

a3b3c3 ≥
∑
sym

a4b4c +
∑
sym

a4b3c2.

∑
sym

a6b3 ≥
∑
sym

a5b4.

∑
sym

a6b3 ≥
∑
sym

a5b3c.
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Fourth solution by Dr. Titu Andreescu, University of Texas at Dallas.

Solution. Let us prove the following lemma:

Lemma. For any real numbers x, y we have

3(x2 − xy + y2)3 ≥ x6 + x3y3 + y6.

Denote s = x + y and p = xy. Then clearly s2 − 4p ≥ 0 and we have

3(x2 − xy + y2)3 = 3(s2 − 3p)3 = 3((s2 − 2p)− p)3 =

= 3(s2 − 2p)3 − 9(s2 − 2p)2p + 9(s2 − 2p)p2 − 3p3,

and

x6 + x3y3 + y6 = (x2 + y2)((x2 + y2)2 − 3x2y2) + x3y3 =

= (s2 − 2p)((s2 − 2p)2 − 3p2) + p3 = (s2 − 2p)3 − 3(s2 − 2p)p2 + p3.

Thus it is enough to prove that

2(s2 − 2p)3 − 9(s2 − 2p)2p + 12(s2 − 2p)p2 − 4p3 ≥ 0,

or

2(s2 − 2p)2(s2 − 4p)− 5(s2 − 2p)2p(s2 − 4p) + 2p(s2 − 4p) ≥ 0.

Last inequality is equivalent to

(s2 − 4p)(2(s2 − 2p)2 − 5(s2 − 2p)2p + 2p) ≥ 0,

or
(s2 − 4p)(2(s2 − 2p)(s2 − 4p)− p(s2 − 4p)) ≥ 0.

That is (s2 − 4p)2(2s2 − 5p) ≥ 0 and lemma is proven.

Returning back to the problem and using our lemma we have

3(a2 − ab + b2)(b2 − bc + c2)(c2 − ac + a2) ≥

≥ (a6 + a3b3 + b6)
1
3 (b6 + b3c3 + c6)

1
3 (c6 + c3a3 + a6)

1
3 ≥ a3b3 + b3c3 + c3a3.

Last inequality is due Holder, combining triples

(a3b3, b6, a6), (b6, b3c3, c6), (a6, c6, a3c3).
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S30. Let p > 5 be a prime number and let

S(m) =

p−1
2∑

i=0

m2i

2i
.

Prove that the numerator of S(1) is divisible by p if and only if the
numerator of S(3) is divisible by p.

Proposed by Iurie Boreico, Moldova

Solution by Iurie Boreico, Moldova

Solution. We shall consider congruence in rational numbers.

Let
a

b
in lowest terms be divisible by p if p divides a.

Now we have to prove that p|S(1) if and only if p|S(3).

Let 0 < k < p. Then

(
p
k

)
p

=
(p− 1)!

k!(p− k)!
, we have

(p− k)! ≡ (−1)p−k(p− 1)(p− 2) . . . k.

Therefore we conclude (
p
k

)
p
≡ (−1)k−1 1

k
(mod p).

Consider the sum Q(m) = (m + 1)p − (m− 1)p − 2. It is clear from
Newton’s Binomial Theorem and the result above that

S(m) ≡ 1

−2p
Q(m)(mod p),

because

Q(m) = 2p(mp−1 +

(
p
3

)
p

mp−3 + ... +

(
p

p−2

)
p

m2) ≡

≡ 2p

(
mp−1 + (−1)3−1mp−3

3
+ ... + (−1)p−2−1 m2

p− 2

)
≡

≡ −2p

(
mp−1

p− 1
+

mp−3

p− 3
+ ... +

m2

2

)
(mod p).

Hence p|S(m) if an only if p2|Q(m) (for 0 < m < p).
Therefore we must prove that p2|Q(1) if and only if p2|Q(3).
But Q(1) = 2p − 2 and Q(3) = 4p − 2p − 2 = (2p − 2)(2p + 1). As

2p + 1 is not divisible by p, the conclusion follows.
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Undergraduate

U25. Calculate the following sum
∞∑

k=0

2k + 1

(4k + 1)(4k + 3)(4k + 5)
.

Proposed by José Luis Dı́az-Barrero, Barcelona, Spain and
Pantelimon George Popescu, Bucharest, Romania

First solution by Vishal Lama, Southern Utah University

Solution. Let S =
∑∞

k=0
2k+1

(4k+1)(4k+3)(4k+5)
.

Using partial fractions, we note that

ak =
2k + 1

(4k + 1)(4k + 3)(4k + 5)
=

1

16
· 1

4k + 1
+

2

16
· 1

4k + 3
− 3

16
· 1

4k + 5
.

Let Sn =
∑n

k=0 ak. Then,

Sn =
n∑

k=0

(
1

16
· 1

4k + 1
+

2

16
· 1

4k + 3
− 3

16
· 1

4k + 5

)
=

=
1

16

n∑
k=0

(
1

4k + 1
− 1

4k + 5

)
+

2

16

n∑
k=0

(
1

4k + 3
− 1

4k + 5

)
=

=
1

16

(
1− 1

4n + 5

)
+

2

16

n∑
k=0

(
1

4k + 3
− 1

4k + 5

)
.

Thus, S = limn→∞ Sn

S =
1

16
+

2

16

∞∑
k=0

(
1

4k + 3
− 1

4k + 5

)

⇒ S =
1

16
+

2

16

(
1

3
− 1

5
+

1

7
− 1

9
+

1

11
− . . .

)
.

But, then we have∫ 1

0

dt

1 + t2
= tan−1 t

∣∣∣1
0

=
π

4
, (where |t| < 1)

⇒ π

4
=

∫ 1

0

(1− t2 + t4 − t6 + t8 − . . .) dt
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⇒ π

4
= (t− t3

3
+

t5

5
− t7

7
+

t9

9
− . . .)

∣∣∣1
0

⇒ 1

3
− 1

5
+

1

7
− 1

9
+

1

11
− . . . = 1− π

4
.

Using the above result we get

S =
1

16
+

2

16

(
1− π

4

)
=

6− π

32
.

Second solution by Aleksandar Ilic, Serbia.

Solution. We have to divide series into some sums with nicer form.
The following identity can be interesting.

2k + 1

(4k + 1)(4k + 3)(4k + 5)
=

1

16
· 1

4k + 1
+

1

8
· 1

4k + 3
− 3

16
· 1

4k + 5
.

We get this the same way we disunite rational functions and verifica-
tion is strait-forward. First and third sum are the same, except the first
term, so summing from k = 0 to infinity we have:

S =
1

16
·
∞∑

k=0

1

4k + 1
+

1

8

∞∑
k=0

1

4k + 3
− 3

16

∞∑
k=0

1

4k + 5
.

Rearranging and grouping terms, we get:

S =
3

16
+

(
1

16
− 3

16

) ∞∑
k=0

1

4k + 1
+

1

8

∞∑
k=0

1

4k + 3
=

=
3

16
− 1

8

∞∑
k=0

(
1

4k + 1
− 1

4k + 3

)
=

=
3

16
− 1

8

(
1

1
− 1

3
+

1

5
− 1

7
+ . . .

)
=

3

16
− 1

8
· π

4
.

Using well-known summation for number π, the series equals 6−π
32

≈
0.089325.

Also solved by Ashay Burungale, India; Jean-Charles Mathieux, Dakar
University, Sénégal.
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U26. Let f : [a, b] → R ( 0 < a < b) be a continuous function on [a, b]
and differentiable on (a, b). Prove that there is a c ∈ (a, b) such that

2

a− c
< f ′(c) <

2

b− c

Proposed by José Luis Dı́az-Barrero, Barcelona, Spain and
Pantelimon George Popescu, Bucharest, Romania

First solution by Bin Zhao, HUST, China.

Solution. If there is a x1, x2 ∈ (a, b) such f ′(x1) ≥ 0, f ′(x2) ≤ 0,
then by Darboux’s Theorem we have there is a c between x1, x2, such
that f ′(c) = 0, then c will satisfy the condition.

If not we may assume f ′(x) > 0, x ∈ (a, b) (because the proof will
be similar for f ′(x) < 0, x ∈ (a, b)). Then assume the contrary, which
means there is not a c ∈ (a, b) such that

2

a− c
< f ′(c) <

2

b− c
.

It follows that we have f ′(x) ≥ 2
b−c

.

Let xk = b− 1
2k (b− a), k = 1, 2, . . .. Then

f(x1)− f(a) = f

(
a + b

2

)
− f(a) = f ′(ξ1)

b− a

2
≥ 2

b− ξ1

· b− a

2
≥ 1,

and

f(xk+1)− f(xk) = f ′(ξk+1)(xk+1 − xk) ≥
2

b− ξk+1

· b− a

2k+1
≥ 1,

k = 1, 2, . . . , and ξ1 ∈ (a, x1), xk+1 ∈ (xk, xk + 1).

We have f(xn)− f(a) ≥ n, which will be in contradiction with
f(xn)− f(a) ≤ 2M(M = maxa≤x≤b f(x)), when n is large enough.
The problem is solved.
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Second solution by Aleksandar Ilic, Serbia.

Solution. Notice that 1
a−c

is less than zero, and number 1
b−c

is greater
than zero. If there exist c ∈ (a, b) such that f ′(c) = 0, problem is solved.
From Darboux’s theorem function f ′(x) always has the same sign. Let
f ′(x) > 0 for every x ∈ (a, b). Now we proceed by contradiction: assume
that for every c ∈ (a, b) we have

f ′(c) ≥ 2

b− c
.

We can integrate inequality in interval (a, x), and get

f(x)− f(a) =

∫ x

a

f ′(c)dc ≥
∫ x

a

2dc

b− c
= 2 (ln(b− a)− ln(b− x)) .

If we let x → b, left side becomes f(b)− f(a) and right side is

2 ln(b− a)− lim
x→b

ln(x− b) → +∞.

This is impossible, since left side is always greater of equal then right side.
Contradiction! Case f ′(x) < 0 can be considered in similar manner.

Third solution by José Luis Dı́az-Barrero, Barcelona, Spain and Pan-
telimon George Popescu, Bucharest, Romania.

Solution. Consider the function F : [a, b] → R defined by

F (x) = (x− a)(x− b) exp [ f(x)]

Since F is continuous function on [a, b], derivable in (a, b) and F (a) =
F (b) = 0, then by Rolle’s theorem there exists c ∈ (a, b) such that F ′(c) =
0. We have

F ′(x) = [x− b + x− a + (x− a)(x− b) f ′(x)] exp [ f(x)] ,

and
2c− a− b + (c− a)(c− b) f ′(c) = 0.

From the preceding and from ( 0 < a < b) immediately follows

2

a− c
< f ′(c) =

a + b− 2c

(a− c)(b− c)
<

2

b− c
.
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In fact, since a− c < 0, then

2

a− c
<

a + b− 2c

(a− c)(b− c)
⇔ 2 >

a + b− 2c

b− c
⇔ 2b−2c > a+b−2c ⇔ b > a,

and

a + b− 2c

(a− c)(b− c)
<

2

b− c
⇔ a + b− 2c

a− c
< 2 ⇔ a+b−2c > 2a−2c ⇔ b > a.

This completes the proof.
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U27. Let k be a positive integer. Evaluate

1∫
0

{
k

x

}2

dx

where {a} is the fractional part of a.

Proposed by Ovidiu Furdui, Western Michigan University

Solution by Ovidiu Furdui, Western Michigan University.

Solution. The integral equals

k

(
ln(2π)− γ + 1 +

1

2
+ · · ·+ 1

k
+ 2k ln k − 2k − 2 ln(k!)

)
,

where γ = lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− ln n

)
is the Euler-Mascheroni

constant. If we make the substitution
k

x
= t, we get that

I =

1∫
0

{
k

x

}2

dx = k

∞∫
k

{t}2

t2
dt = k

∞∑
l=k

l+1∫
l

(t− l)2

t2
dt =

k
∞∑

l=k

l+1∫
l

(
1− 2l

t
+

l2

t2

)
dt = k

∞∑
l=k

(
1− 2l ln

l + 1

l
+

l

l + 1

)
=

= k
∞∑

l=k

(
2− 2l ln

l + 1

l
− 1

l + 1

)
.

Let Sn be the nth partial sum of the preceding series, i.e.,

Sn =
n∑

l=k

(
2− 2l ln

l + 1

l
− 1

l + 1

)
.

This series is a telescoping series, so we obtain

Sn = 2(n− k + 1)−
(

1

k + 1
+

1

k + 2
+ · · ·+ 1

1 + n

)
− 2

n∑
l=k

l ln
l + 1

l
=
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= 2(n− k + 1)−
(

1

k + 1
+

1

k + 2
+ · · ·+ 1

1 + n

)
−

−2

[
n ln(n + 1)− k ln k − ln

n!

k!

]
=

= 2(n− k + 1)−
(

1

k + 1
+

1

k + 2
+ · · ·+ 1

1 + n

)
−

−2n ln(n + 1) + 2k ln k + 2 ln(n!)− 2 ln(k!). (1)

For calculating lim
n→∞

Sn, we will make use of Stirling’s formula, i.e.,

n! ≈
√

2πn
(n

e

)n

.

It follows that

2 ln n! ≈ ln(2π) + (2n + 1) ln n− 2n. (2)

Combining (1) and (2), we get after straightforward calculations that

Sn = 2(1− k) + ln(2π) + 2k ln k − 2 ln(k!)− 2n ln
n + 1

n
−

−
(

1

k + 1
+

1

k + 2
+ · · ·+ 1

1 + n
− ln n

)
→

→ −2k + ln(2π) + 2k ln k − 2 ln k!−
(

γ − 1− 1

2
− · · · − 1

k

)

= ln(2π)− γ + 1 +
1

2
+ · · ·+ 1

k
+ 2k ln k − 2k − 2 ln(k!).

Thus,

1∫
0

{
k

x

}2

dx = k

(
ln(2π)− γ + 1 +

1

2
+ · · ·+ 1

k
+ 2k ln k − 2k − 2 ln(k!)

)
.

Remark. When k = 1 the following integral formulae holds.

1∫
0

{
1

x

}2

dx = ln 2π − γ − 1.44
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U28. Let f be the function defined by

f(x) =
∑
n≥1

| sin n| · xn

1− xn
.

Find in a closed form a function g such that lim
x→1−

f(x)

g(x)
= 1.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

No solutions received.
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U29. Let A be a square matrix of order n, for which there is a positive
integer k such that kAk+1 = (k + 1)Ak. Prove that A − In is invertible
and find its inverse.

Proposed by Dr. Titu Andreescu, University of Texas at Dallas

First solution by Bin Zhao, HUST, China.

Solution. Let B = A− In,then we have:

k(B + In)k+1 = (k + 1)(B + In)k

which is equivalent to

k

(
k+1∑
i=0

(
k + 1

i

)
Bi

)
= (k + 1)

(
k∑

i=0

(
k

i

)
Bi

)

⇐⇒
k+1∑
i=1

(
k

(
k + 1

i

)
− (k + 1)

(
k

i

))
Bi = In

⇐⇒ B

(
k∑

i=0

(
k

(
k + 1

i + 1

)
− (k + 1)

(
k

i + 1

))
Bi

)
= In.

Thus we have A− In is invertible, and its inverse is

k∑
i=0

(
k

(
k + 1

i + 1

)
− (k + 1)

(
k

i + 1

))
Bi,

where B = A− In.

Second solution by Jean-Charles Mathieux, Dakar University, Sénégal.

Solution. You can show that A− In is invertible without exhibiting
its inverse. For instance, suppose that A−In is not invertible, then there
is a non zero vector X such that AX = X, since kAk+1 = (k +1)Ak, you
have kX = (k + 1)X which is a contradiction.

However we can use another approach:
kAk(A− In)− (Ak − In) = kAk+1 − (k + 1)Ak + In = In,

and Ak − In = (A− In)
∑k−1

i=0 Ai.
So (A − In)(kAk − Ak−1 − Ak−2 − · · · − In) = In, which shows that

(A−In) is invertible and that (A−In)−1 = (kAk−Ak−1−Ak−2−· · ·−In).
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U30. Let n be a positive integer. What is the largest cardinal of a
finite subgroup G of GLn(Z) such that for any matrix A ∈ G, all elements
of A− In are even?

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Solution by Jean-Charles Mathieux, Dakar University, Sénégal.

Solution. Let us present a sketch of the proof. Let m = |G|. If
A ∈ G, Am = In so A is diagonalisable, in Mn(C) and its eigenvalues λ
are such that |λ| 6 1.

There exist B ∈Mn(Z) such that A = In + 2B. B is also diagonalis-
able, in Mn(C) and its eigenvalues µ are such that |µ| 6 1. In fact, since
µ = λ−1

2
, |µ| = 1 iff λ = −1. Then you show that only 0 and 1 could be

eigenvalues of B.
Reciprocally, we check that G = {diag(±1, . . . ,±1)} satisfies the as-

sumptions.
So the largest cardinal of a finite subgroup G of GLn(Z) such that for

any matrix A ∈ G, all elements of A− In are even is 2n.
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Olympiad

O25. For any triangle ABC, prove that

cos
A

2
cot

A

2
+cos

B

2
cot

B

2
+cos

C

2
cot

C

2
≥
√

3

2

(
cot

A

2
+ cot

B

2
+ cot

C

2

)
Proposed by Darij Grinberg, Germany

First solution by Zhao Bin, HUST, China.

Solution. Denote a, b, c be the three side of the triangle, and

a = y + z, b = z + x, c = x + y.

We have:

r =

√
xyz

x + y + z

cos
A

2
=

x√
x2 + r2

, cos
B

2
=

y√
y2 + r2

, cos
C

2
=

z√
z2 + r2

,

and

cos
A

2
=

x

r
, cos

B

2
=

y

r
, cos

C

2
=

z

r

Then the inequality is equivalent to:

x2√
4x(x + y + z) · 3(x + y)(x + z)

+
y2√

4y(x + y + z) · 3(y + x)(y + z)

+
z2√

4z(x + y + z) · 3(z + x)(z + y)
≥ 1

4
.

But we have:

2
√

4x(x + y + z) · 3(x + y)(x + z) ≤ 4x(x + y + z) + 3(x + y)(x + z) =

= 7x(x + y + z) + 3yz,

2
√

4y(x + y + z) · 3(y + x)(y + z) ≤ 4y(x + y + z) + 3(y + x)(y + z) =

= 7y(x + y + z) + 3zx,

2
√

4z(x + y + z) · 3(z + x)(z + y) ≤ 4z(x + y + z) + 3(z + x)(z + y) =

= 7z(x + y + z) + 3xy.
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Thus it suffices to prove:

x2

7x(x + y + z) + 3yz
+

y2

7y(x + y + z) + 3zx
+

z2

7z(x + y + z) + 3xy
≥ 1

8
.

But by Cauchy Inequality we have:

x2

7x(x + y + z) + 3yz
+

y2

7y(x + y + z) + 3zx
+

z2

7z(x + y + z) + 3xy

≥ (x + y + z)2

7(x + y + z)2 + 3(xy + yz + zx)
≥ 1

8
.

So we solved the inequality.

Second solution by David E. Narvaez, Universidad Tecnologica,
Panama.

Solution. From Jensen’s inequality we have that

tan
A

2
+ tan

B

2
+ tan

C

2
≥
√

3.

and

sin
A

2
sin

B

2
+ sin

B

2
sin

C

2
+ sin

C

2
sin

A

2
≥ 3

4
.

thus
2

3

(∑
cyc

tan
A

2

)(∑
cyc

sin
B

2
sin

C

2

)
≥
√

3

2
.

Let us assume, without loss of generality, that A ≥ B ≥ C. Then(
tan A

2
+ tan B

2

)
≥
(
tan A

2
+ tan C

2

)
≥
(
tan B

2
+ tan C

2

)
and sin A

2
sin B

2
≥

sin C
2

sin A
2
≥ sin B

2
sin C

2
and by Chebychev’s inequality we get∑

cyc

(
tan

B

2
+ tan

C

2

)
sin

B

2
sin

C

2
≥

≥ 1

3

(∑
cyc

(
tan

B

2
+ tan

C

2

))(∑
cyc

sin
B

2
sin

C

2

)
≥
√

3

2
,
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but(
tan

B

2
+ tan

C

2

)
sin

B

2
sin

C

2
=

(
sin B

2
cos C

2
+ sin C

2
cos B

2

cos B
2

cos C
2

)
sin

B

2
sin

C

2
,

= sin
B + C

2
tan

B

2
tan

C

2
,(

tan
B

2
+ tan

C

2

)
sin

B

2
sin

C

2
= cos

A

2
tan

B

2
tan

C

2
.

and replacing this and similar identities for every term in the left hand
side of our last inequality we have∑

cyc

cos
A

2
tan

B

2
tan

C

2
≥
√

3

2
.

Multiplying this inequality by cot A
2

cot B
2

cot C
2

= cot A
2
+cot B

2
+cot C

2
we get

cos
A

2
cot

A

2
+cos

B

2
cot

B

2
+cos

C

2
cot

C

2
≥
√

3

2

(
cot

A

2
+ cot

B

2
+ cot

C

2

)
,

and we are done.
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O26. Consider a triangle ABC and let O be its circumcenter. Denote
by D the foot of the altitude from A and by E the intersection of AO
and BC. Suppose tangents to the circumcircle of triangle ABC at B and
C intersect at T and that AT intersects this circumcircle at F . Prove
that the circumcircles of triangles DEF and ABC are tangent.

Proposed by Ivan Borsenco, University of Texas at Dallas

Solution by David E. Narvaez, Universidad Tecnologica de Panama,
Panama.

Solution. Let ω, ω′ and ω′′ be the circumcircles of triangles ABC,
TDE and ADE, respectively; let X and F ′ be the points where the line
BC cuts the tangent to ω through A and the line AT . It is a well known
fact that AT is the symmedian corresponding to the vertex A in triangle
ABC*, and since points X, B, F ′ and C are harmonic conjugates, F ′ is
in the polar line of X, and so is A, so AT ′ is the polar line of X, which
implies that the tangent to ω through F passes through X.

We claim that XA is tangent to ω′′, and from the power of the point
X with respect to ω′′ we get that

XA2 = XD ·XE,

which happens to show that the powers of the point X with respect to
ω and ω′ are equal. Thus X is in the radical axis of ω and ω′. Since
F is a point of intersection of these circumferences and the radical axis
XF is tangent to ω′, it is a tangent to ω too, and it follow that this two
circumferences are tangent, as we wished to show.

To prove our claim, consider that m∠XAB = m∠ACB, because XA
is tangent to ω; and m∠BAD = m∠EAC, because the orthocenter and
the circumcenter are isogonal conjugates. Then

m∠XAD = m∠XAB + m∠BAD = m∠ACB + m∠EAC = m∠DEA,

which is a necessary and sufficient condition for XA to be tangent to ω′.

*This follows from the fact that T is the pole of the line BC with
respect to ω. Thus, if M and M ′ are the two points of intersection of
line TO with ω, and A′ is the midpoint of BC; then m∠MAM ′ = 90,
and from the definition of pole and polar line, T , M , A′ and M ′ are
harmonic conjugates. Then it follows that AM and AM ′ are the internal
and external bisectors of ∠TAA′, but AM is the angle bisector of ∠BAC,
so AT is the reflection of AA′ with respect to to the angle bisector AM .
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O27. Let a, b, c be positive numbers such that abc = 4 and a, b, c > 1.
Prove that

(a− 1)(b− 1)(c− 1)(
a + b + c

3
− 1) ≤ (

3
√

4− 1)4

Proposed by Marian Tetiva, Birlad, Romania

First solution by Aleksandar Ilic, Serbia.

Solution. Substitute x = a−1, y = b−1 and z = c−1. Now condition
is that x, y, z are positive real numbers such that (1+x)(1+y)(1+z) = 4,
and we have to prove inequality:

xyz · x + y + z

3
≤ (

3
√

4− 1)4.

From Newton’s inequality we get

(xy + xz + yz)2 ≥ 3(xy · xz + xy · yz + xz · yz) = 3xyz(x + y + z).

We will prove that xy+xz+yz ≤ 9( 3
√

4−1)2 with equivalent condition
(x + y + z) + (xy + xz + yz) + xyz = 3 using Lagrange multipliers. So,
we examine symmetrical function Φ(x, y, z) = xy + xz + yz + λ(x + y +
z + xy + xz + yz + xyz) by finding partial derivatives.

Φ′x(x, y, z) = y + z + λ(1 + y + z + yz) = 0 ⇒ (1 + x)(y + z) = −4λ

Φ′y(x, y, z) = x + z + λ(1 + x + z + xz) = 0 ⇒ (1 + y)(x + z) = −4λ

Φ′z(x, y, z) = x + y + λ(1 + x + y + xy) = 0 ⇒ (1 + z)(x + y) = −4λ

With some manipulations we get system:

(x− y)(z − 1) = 0, (y − z)(x− 1) = 0, (z − x)(y − 1) = 0.

So, we have either x = y = z or say x = y = 1. These are only possible
points for extreme values. In first case we have x = y = z = 3

√
4 − 1

and xy + xz + yz = 9( 3
√

4 − 1)2. In case x = y = 1 we get z = 0 and
xy + xz + yz = 1 < 9( 3

√
4− 1)2. Points on border are only with x = 0 or

x = 3, and these are trivial for consideration.
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Second solution by Zhao Bin, HUST, China.

Solution. Let x = a− 1, y = b− 1, z = c− 1, then we have
x, y, z > 0 and

xyz + xy + yz + zx + x + y + z = 3. (2)

The inequality is equivalent to:

xyz(x + y + z) ≤ 3
(

3
√

4− 1
)4

.

Denote S = xyz(x + y + z), by

(x + y + z)4 ≥ 27xyz(x + y + z).

We have
x + y + z ≥ 4

√
27S,

also

xyz +

(
3
√

4− 1
)2

3
(x + y + z) ≥ 2

√(
3
√

4− 1
)2

3
S,

and
xy + yz + zx ≥

√
3xyz(x + y + z) =

√
3S.

Combining the above three inequalities with equation (1), we get(
1−

(
3
√

4− 1
)2

3

)
4
√

27S + 2

√(
3
√

4− 1
)2

3
S +

√
3S ≤ 3.

Thus it is easy to get S ≤
(

3
√

4− 1
)4

, and the problem is solved.
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O28. Let φ be Euler’s totient function. Find all natural numbers n
such that the equation φ(. . . (φ(x))) = n (φ iterated k times) has solutions
for any natural k.

Proposed by Iurie Boreico, Moldova

Solution by Ashay Burungale, India.

Solution. Restate the problem as: find all infinite sequences of pos-
itive integers an, n ≥ 0 satisfying φ(an) = an−1. If x is not a power of 2,
φ(x) is divisible by at least as high a power of two as x. Unless x is of
the form 2a ∗ pb with p = 3(mod 4) the power is strictly greater. Unless
p = 3 or b = 1, φ(φ(x)) is divisible by a strictly larger power of 2 than
x. If φ(x) is divisible by an odd prime, x is also divisible by a (possibly
different) odd prime. Hence, if any an is not a power of 2, all subsequent
terms are, and the power of 2 dividing ai is non-increasing for i ≥ n,
hence is ultimately constant. Hence terms are ultimately of the form
2a · 3b or 2a · p with p > 3 and p = 3(mod 4). In the second case, the
sequence must be

2a · p, 2a · (2p + 1), 2a · (4p + 3), 2a · (8p + 7), . . .

where p, 2p + 1, 4p + 3, 8p + 7 . . . are all prime. The pth term will be
2p−1(p + 1)− 1 ≡ p + 1− 1 = 0(mod p), thus not prime. Hence this case
cannot arise. So the possible sequences are

i) an = 2n.

ii) for each k, an = 2n if n < k, an = 2k · 3n−k if n ≥ k.

In particular, the answer to the original form of the question is all
numbers of the form 2a · 3b except 3.
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O29. Let P (x) be a polynomial with real coefficients of degree n with
n distinct real zeros x1 < x2 < ... < xn. Suppose Q(x) is a polynomial
with real coefficients of degree n − 1 such that it has only one zero on
each interval (xi, xi+1) for i = 1, 2, ..., n − 1. Prove that the polynomial
Q(x)P ′(x)−Q′(x)P (x) has no real zero.

Proposed by Khoa Lu Nguyen, Massachusetts Institute of Technology

Solution by Aleksandar Ilic, Serbia.

Solution. For polynomials P (x) = a(x−x1)(x−x2) . . . (x−xn) and

Q(x) = b(x− y1)(x− y2) . . . (x− yn−1) we have interlacing zeros

x1 < y1 < x2 < y2 < x3 < · · · < yn−1 < xn.

Consider rational function, which is defined on R except for the points
x1, x2, . . . , xn

f(x) =
Q(x)

P (x)
=

b

a
· (x− y1)(x− y2) . . . (x− yn−1)

(x− x1)(x− x2) . . . (x− xn)
.

Let R(x) = P ′(x)Q(x) − P (x)Q′(x). In points x = xi, we have
R(x) = P ′(xi)Q(xi) 6= 0, because xi isn’t root of polynomial Q(x) and
P ′(x) has only roots with multiplicity one.

Lema: If f(x) = a(x − x1)(x − x2) . . . (x − xn) is polynomial with
degree n and distinct real zeros x1 < x2 < · · · < xn, then

f1(x) =
f(x)

x− x1

, f2(x) =
f(x)

x− x2

, . . . , fn(x) =
f(x)

x− xn

.

form a basis for the polynomials of degree n− 1.

Proof: We have n polynomials, and it is enough to prove that they
are linearly independent. Assume that for some real α1, α2, . . . , αn we
have

g(x) =
n∑

i=1

αi · fi(x) = 0.

For x = xk we get g(xk) = αkfk(xk) = 0 and thus αk = 0 for every
k = 1, n.

According to lema above if we write Pk(x) = P (x)
x−xk

then

Q(x) = c1P1(x) + c2P2(x) + · · ·+ cnPn(x).
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Evaluate Q(x) at roots of polynomial P (x).

Q(xk) = ckPk(xk) = ck(xk−x1)(xk−x2) . . . (xk−xk−1)(xk−xk+1) . . . (xk−xn).

So, sign of Q(xk) is sgn(ck)(−1)n−k. Because of interlacing property
of zeros, we have that Q(xk) alternate in sign or equivalently that ck have
the same sign.

Let’s calculate first derivative of f(x).

f ′(x) =

(
Q(x)

P (x)

)′
=

(
n∑

i=1

ci

x− xi

)′
= −

n∑
i=1

ci

(x− xi)2
6= 0.

Thus the problem is solved.
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O30. Prove that equation

1

x2
1

+
1

x2
2

+ ... +
1

x2
n

=
n + 1

x2
n+1

has a solution in positive integers if and only of n ≥ 3.

Proposed by Oleg Mushkarov, Bulgarian Academy of Sciences, Sofia

First solution by Li Zhou, Polk Community College.

Solution. If n = 1, then the equation becomes 1
x2
1

= 2
x2
2
, which has

no solution since
√

2 is irrational.
Consider next that n = 2. then the equation becomes (x2x3)

2 +
(x1x3)

2 = 3(x1x2)
2. For 1 ≤ i ≤ 3, write xi = 3niyi, where yi is not

divisible by 3. Wlog, assume that n1 ≥ n2. Then

32(n2+n3)((y2y3)
2 + 32(n1−n2)(y1y3)

2) = 32(n1+n2)+1(y1y2)
2. (3)

Since 1 is the quadratic residue modulo 3, (y2y3)
2+32(n1−n2)(y1y3)

2 ≡ 1, 2
(mod 3). Hence the exponents of 3 in the two sides of (3) cannot equal.

Finally, consider n ≥ 3. Starting from 52 = 42 + 32, we get 1
122 =

1
152 + 1

202 by dividing by 324252. Multiplying by 1
122 , we get

1

124
=

1

122152
+

1

122202
=

1

122152
+ (

1

152
+

1

202
)

1

202

=
1

(12 · 15)2
+

1

(15 · 20)2
+

1

(20 · 20)2
.

Hence, (x1, x2, x3, x4) = (12 ·15, 15 ·20, 202, 2 ·122) is a solution for n = 3.
Inductively, assume that x1, . . . , xn+1 are solutions to

1

x2
1

+ · · ·+ 1

x2
n

=
n + 1

x2
n+1

for some n ≥ 3. Then

1

x2
1

+ · · ·+ 1

x2
n

+
1

x2
n+1

=
n + 2

x2
n+1

,

completing the proof.
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Second solution by Aleksandar Ilic, Serbia.

Solution. For n = 1, we get equation
√

2x1 = x2, and since
√

2 is
irrational number - there are no solution in this case. For n = 2, we have
equation x2

2x
2
3 + x2

1x
2
3 = 3x2

1x
2
2 or equivalently a2 + b2 = 3c2 with obvious

substitution. We can assume that numbers a, b and c are all different
from zero and that they are relatively prime, meaning gcd(a, b, c) = 1.
Square of an integer is congruent to 0 or 1 modulo 3, and hence both a
and b are divisible by 3. Now, number c is also divisible by 3 - and we
get contradiction.

For n = 3, we have at least one solution (x1, x2, x3, x4) = (3, 3, 6, 4)
or

1

32
+

1

33
+

1

62
=

4

42
.

For every integer n > 3, we can use solution for n = 3, and get:

1

32
+

1

33
+

1

62
+

1

42
+ · · ·+ 1

42︸ ︷︷ ︸
n−3

=
4

42
+

n− 3

42
=

n + 1

42
.

Also solved by Ashay Burungale, India.
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